scispace - formally typeset
Open AccessJournal ArticleDOI

Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress.

Reads0
Chats0
TLDR
These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.
Abstract
Fluid velocities were measured by laser Doppler velocimetry under conditions of pulsatile flow in a scale model of the human carotid bifurcation. Flow velocity and wall shear stress at five axial and four circumferential positions were compared with intimal plaque thickness at corresponding locations in carotid bifurcations obtained from cadavers. Velocities and wall shear stresses during diastole were similar to those found previously under steady flow conditions, but these quantities oscillated in both magnitude and direction during the systolic phase. At the inner wall of the internal carotid sinus, in the region of the flow divider, wall shear stress was highest (systole = 41 dynes/cm2, diastole = 10 dynes/cm2, mean = 17 dynes/cm2) and remained unidirectional during systole. Intimal thickening in this location was minimal. At the outer wall of the carotid sinus where intimal plaques were thickest, mean shear stress was low (-0.5 dynes/cm2) but the instantaneous shear stress oscillated between -7 and +4 dynes/cm2. Along the side walls of the sinus, intimal plaque thickness was greater than in the region of the flow divider and circumferential oscillations of shear stress were prominent. With all 20 axial and circumferential measurement locations considered, strong correlations were found between intimal thickness and the reciprocal of maximum shear stress (r = 0.90, p less than 0.0005) or the reciprocal of mean shear stress (r = 0.82, p less than 0.001). An index which takes into account oscillations of wall shear also correlated strongly with intimal thickness (r = 0.82, p less than 0.001). When only the inner wall and outer wall positions were taken into account, correlations of lesion thickness with the inverse of maximum wall shear and mean wall shear were 0.94 (p less than 0.001) and 0.95 (p less than 0.001), respectively, and with the oscillatory shear index, 0.93 (p less than 0.001). These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.

read more

Citations
More filters

ORIGINAL RESEARCH Patient-Specific Computational Hemodynamics of Intracranial Aneurysms from 3D Rotational Angiography and CT Angiography: An In Vivo Reproducibility Study

TL;DR: In this article, the reproducibility of geometric and hemodynamic variables across the two modalities was evaluated, and good agreement was found for qualitative variables, such as the structure of the flow pattern and the flow complexity.
Journal ArticleDOI

Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis.

TL;DR: The proliferation of disease at the bed of the distal junction of an end-to-side anastomosis is attributed to abnormal wall shear stress (WSS) distribution, which is proportional to the viscosity and shear rate of the flowing fluid.
Journal ArticleDOI

Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows.

TL;DR: Compared to RRT, WSSET is able to better approximate the locations of near-wall stagnation and concentration build-up of chemical species, particularly in complex flows, and can be more suitable in regions of complex hemodynamics that are traditionally difficult to quantify, yet encountered in many disease scenarios.
Journal ArticleDOI

Risk stratification of individual coronary lesions using local endothelial shear stress: a new paradigm for managing coronary artery disease.

TL;DR: In-vivo assessment of the local endothelial shear stress environment, severity of inflammation and vascular remodeling response, all responsible for individual plaque behavior and natural history, in combination with systemic biomarkers of vulnerability, may allow for detailed risk stratification of individual early atherosclerotic plaques, thereby guiding both systemic and local, lesion-specific therapeutic strategies.
Journal ArticleDOI

Characterization of a Sudden Expansion Flow Chamber to Study the Response of Endothelium to Flow Recirculation

TL;DR: Finite element numerical solutions of the two and three-dimensional forms of the Navier-Stokes equation were used to determine the wall shear stress distribution and predict the location of reattachment in a conventional parallel plate flow chamber modified to produce an asymmetric sudden expansion.
References
More filters
Journal ArticleDOI

Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.

TL;DR: It is concluded that in the human carotid bifurcation, regions of moderate to high shear stress, where flow remains unidirectional and axially aligned, are relatively spared of intimal thickening.
Journal ArticleDOI

Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis.

TL;DR: It appears that wall shear rate may be a major controlling factor in the development of atheromatous lesions in man and in animals and a net flux of cholesterol from blood to wall cannot account for the observed normally occurring (quasi-steady state) and experimentally induced atheroma.
Journal ArticleDOI

The dynamic response of vascular endothelial cells to fluid shear stress.

TL;DR: Preliminary studies indicate that certain endothelial cell functions, including fluid endocytosis, cytoskeletal assembly and nonthrombogenic surface properties, also are sensitive to shear stress, which suggests that fluid mechanical forces can directly influence endothelialcell structure and function.
Journal ArticleDOI

Correlation between intimal thickness and fluid shear in human arteries

TL;DR: It is suggested that large excursions of interfacial shear, at levels too low to cause damage, may inhibit intimal thickening.
Journal ArticleDOI

Vascular endothelial morphology as an indicator of the pattern of blood flow.

TL;DR: The results obtained to date suggest that endothelial cell morphology and orientation around a branch vessel may be a natural marker or indicator of the detailed features of blood flow.
Related Papers (5)