scispace - formally typeset
Open AccessJournal ArticleDOI

Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress.

Reads0
Chats0
TLDR
These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.
Abstract
Fluid velocities were measured by laser Doppler velocimetry under conditions of pulsatile flow in a scale model of the human carotid bifurcation. Flow velocity and wall shear stress at five axial and four circumferential positions were compared with intimal plaque thickness at corresponding locations in carotid bifurcations obtained from cadavers. Velocities and wall shear stresses during diastole were similar to those found previously under steady flow conditions, but these quantities oscillated in both magnitude and direction during the systolic phase. At the inner wall of the internal carotid sinus, in the region of the flow divider, wall shear stress was highest (systole = 41 dynes/cm2, diastole = 10 dynes/cm2, mean = 17 dynes/cm2) and remained unidirectional during systole. Intimal thickening in this location was minimal. At the outer wall of the carotid sinus where intimal plaques were thickest, mean shear stress was low (-0.5 dynes/cm2) but the instantaneous shear stress oscillated between -7 and +4 dynes/cm2. Along the side walls of the sinus, intimal plaque thickness was greater than in the region of the flow divider and circumferential oscillations of shear stress were prominent. With all 20 axial and circumferential measurement locations considered, strong correlations were found between intimal thickness and the reciprocal of maximum shear stress (r = 0.90, p less than 0.0005) or the reciprocal of mean shear stress (r = 0.82, p less than 0.001). An index which takes into account oscillations of wall shear also correlated strongly with intimal thickness (r = 0.82, p less than 0.001). When only the inner wall and outer wall positions were taken into account, correlations of lesion thickness with the inverse of maximum wall shear and mean wall shear were 0.94 (p less than 0.001) and 0.95 (p less than 0.001), respectively, and with the oscillatory shear index, 0.93 (p less than 0.001). These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.

read more

Citations
More filters
Journal ArticleDOI

Major carotid plaque surface irregularities correlate with neurologic symptoms

TL;DR: Surface irregularities were revealed by means of submillimeter resolution of the carotid plaques with MRI to be common, but only the presence of major irregularities correlated with the patient having TIA or stroke.
Journal ArticleDOI

In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models.

TL;DR: A 3D non-Newtonian multi-component FSI model based on in vivo/ex vivo MRI images for human atherosclerotic plaques was introduced to investigate flow and plaque stress/strain behaviors which may be related to plaque progression and rupture.
Journal ArticleDOI

An insight into the mechanistic role of the common carotid artery on the hemodynamics at the carotid bifurcation.

TL;DR: These findings support the hypothesis that helical flow in CCA might reduce the likelihood of flow disturbances at the bifurcation and confirm the physiological role of CCA in transporting and enforcing helicals flow structures into the b ifurcation, giving further contribution to the helicity-driven suppression of disturbed shear.
Journal ArticleDOI

Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms.

TL;DR: These spatial and temporal variations in the hemodynamic forces, the formation of regions of stasis, and the transition to turbulence are postulated to play an important role in the etiology of the disease by activating endoluminar thrombus formation, lipid deposition, and certain inflammatory mechanisms.
References
More filters
Journal ArticleDOI

Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.

TL;DR: It is concluded that in the human carotid bifurcation, regions of moderate to high shear stress, where flow remains unidirectional and axially aligned, are relatively spared of intimal thickening.
Journal ArticleDOI

Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis.

TL;DR: It appears that wall shear rate may be a major controlling factor in the development of atheromatous lesions in man and in animals and a net flux of cholesterol from blood to wall cannot account for the observed normally occurring (quasi-steady state) and experimentally induced atheroma.
Journal ArticleDOI

The dynamic response of vascular endothelial cells to fluid shear stress.

TL;DR: Preliminary studies indicate that certain endothelial cell functions, including fluid endocytosis, cytoskeletal assembly and nonthrombogenic surface properties, also are sensitive to shear stress, which suggests that fluid mechanical forces can directly influence endothelialcell structure and function.
Journal ArticleDOI

Correlation between intimal thickness and fluid shear in human arteries

TL;DR: It is suggested that large excursions of interfacial shear, at levels too low to cause damage, may inhibit intimal thickening.
Journal ArticleDOI

Vascular endothelial morphology as an indicator of the pattern of blood flow.

TL;DR: The results obtained to date suggest that endothelial cell morphology and orientation around a branch vessel may be a natural marker or indicator of the detailed features of blood flow.
Related Papers (5)