scispace - formally typeset
Open AccessJournal ArticleDOI

Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress.

Reads0
Chats0
TLDR
These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.
Abstract: 
Fluid velocities were measured by laser Doppler velocimetry under conditions of pulsatile flow in a scale model of the human carotid bifurcation. Flow velocity and wall shear stress at five axial and four circumferential positions were compared with intimal plaque thickness at corresponding locations in carotid bifurcations obtained from cadavers. Velocities and wall shear stresses during diastole were similar to those found previously under steady flow conditions, but these quantities oscillated in both magnitude and direction during the systolic phase. At the inner wall of the internal carotid sinus, in the region of the flow divider, wall shear stress was highest (systole = 41 dynes/cm2, diastole = 10 dynes/cm2, mean = 17 dynes/cm2) and remained unidirectional during systole. Intimal thickening in this location was minimal. At the outer wall of the carotid sinus where intimal plaques were thickest, mean shear stress was low (-0.5 dynes/cm2) but the instantaneous shear stress oscillated between -7 and +4 dynes/cm2. Along the side walls of the sinus, intimal plaque thickness was greater than in the region of the flow divider and circumferential oscillations of shear stress were prominent. With all 20 axial and circumferential measurement locations considered, strong correlations were found between intimal thickness and the reciprocal of maximum shear stress (r = 0.90, p less than 0.0005) or the reciprocal of mean shear stress (r = 0.82, p less than 0.001). An index which takes into account oscillations of wall shear also correlated strongly with intimal thickness (r = 0.82, p less than 0.001). When only the inner wall and outer wall positions were taken into account, correlations of lesion thickness with the inverse of maximum wall shear and mean wall shear were 0.94 (p less than 0.001) and 0.95 (p less than 0.001), respectively, and with the oscillatory shear index, 0.93 (p less than 0.001). These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.

read more

Citations
More filters
Journal ArticleDOI

Hemodynamic Regulation of Reactive Oxygen Species: Implications for Vascular Diseases

TL;DR: The role of various mechanical forces as modulators of ROS-driven signaling, and their subsequent effects on vascular biology and homeostasis, as well as on specific diseases such as arteriosclerosis, hypertension, and abdominal aortic aneurysms are focused on.
Journal ArticleDOI

Vascular Endothelial Cells Minimize the Total Force on Their Nuclei

TL;DR: This paper calculates the distribution of force exerted on a three-dimensional hump, representing the raised cell nucleus, by a uniform shear flow and finds that, for a nonaxisymmetric ellipsoidal hump, the least total force is experienced when the hump is aligned with the flow.
Journal ArticleDOI

Differential Regulation of Protease Activated Receptor-1 and Tissue Plasminogen Activator Expression by Shear Stress in Vascular Smooth Muscle Cells

TL;DR: Analysis of the effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein in human aortic smooth muscle cells indicates that human PAR-1 and tPA gene expression are regulated differentially by shear Stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.
Journal ArticleDOI

Variability of human coronary artery geometry: An angiographic study of the left anterior descending arteries of 30 autopsy hearts

TL;DR: A computer-based system is described to measure objectively the geometric parameters of arteries from pairs of projection angiograms, which employs backprojection to define the vessel axes in 3-D space and shows no relation between geometric parameters and age or gender.
Journal ArticleDOI

Local hemodynamics affect monocytic cell adhesion to a three-dimensional flow model coated with E-selectin.

TL;DR: It is hypothesized that under the same flow conditions, insolubilized E-selectin on the model's surface may mediate adhesive interactions at higher wall shear stresses, compared to an uncoated model, and pulsatile flow may modify the adhesion profile obtained under steady flow.
References
More filters
Journal ArticleDOI

Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.

TL;DR: It is concluded that in the human carotid bifurcation, regions of moderate to high shear stress, where flow remains unidirectional and axially aligned, are relatively spared of intimal thickening.
Journal ArticleDOI

Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis.

TL;DR: It appears that wall shear rate may be a major controlling factor in the development of atheromatous lesions in man and in animals and a net flux of cholesterol from blood to wall cannot account for the observed normally occurring (quasi-steady state) and experimentally induced atheroma.
Journal ArticleDOI

The dynamic response of vascular endothelial cells to fluid shear stress.

TL;DR: Preliminary studies indicate that certain endothelial cell functions, including fluid endocytosis, cytoskeletal assembly and nonthrombogenic surface properties, also are sensitive to shear stress, which suggests that fluid mechanical forces can directly influence endothelialcell structure and function.
Journal ArticleDOI

Correlation between intimal thickness and fluid shear in human arteries

TL;DR: It is suggested that large excursions of interfacial shear, at levels too low to cause damage, may inhibit intimal thickening.
Journal ArticleDOI

Vascular endothelial morphology as an indicator of the pattern of blood flow.

TL;DR: The results obtained to date suggest that endothelial cell morphology and orientation around a branch vessel may be a natural marker or indicator of the detailed features of blood flow.
Related Papers (5)