scispace - formally typeset
Open AccessJournal ArticleDOI

Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress.

Reads0
Chats0
TLDR
These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.
Abstract
Fluid velocities were measured by laser Doppler velocimetry under conditions of pulsatile flow in a scale model of the human carotid bifurcation. Flow velocity and wall shear stress at five axial and four circumferential positions were compared with intimal plaque thickness at corresponding locations in carotid bifurcations obtained from cadavers. Velocities and wall shear stresses during diastole were similar to those found previously under steady flow conditions, but these quantities oscillated in both magnitude and direction during the systolic phase. At the inner wall of the internal carotid sinus, in the region of the flow divider, wall shear stress was highest (systole = 41 dynes/cm2, diastole = 10 dynes/cm2, mean = 17 dynes/cm2) and remained unidirectional during systole. Intimal thickening in this location was minimal. At the outer wall of the carotid sinus where intimal plaques were thickest, mean shear stress was low (-0.5 dynes/cm2) but the instantaneous shear stress oscillated between -7 and +4 dynes/cm2. Along the side walls of the sinus, intimal plaque thickness was greater than in the region of the flow divider and circumferential oscillations of shear stress were prominent. With all 20 axial and circumferential measurement locations considered, strong correlations were found between intimal thickness and the reciprocal of maximum shear stress (r = 0.90, p less than 0.0005) or the reciprocal of mean shear stress (r = 0.82, p less than 0.001). An index which takes into account oscillations of wall shear also correlated strongly with intimal thickness (r = 0.82, p less than 0.001). When only the inner wall and outer wall positions were taken into account, correlations of lesion thickness with the inverse of maximum wall shear and mean wall shear were 0.94 (p less than 0.001) and 0.95 (p less than 0.001), respectively, and with the oscillatory shear index, 0.93 (p less than 0.001). These studies confirm earlier findings under steady flow conditions that plaques tend to form in areas of low, rather than high, shear stress, but indicate in addition that marked oscillations in the direction of wall shear may enhance atherogenesis.

read more

Citations
More filters
Journal ArticleDOI

Stented Artery Flow Patterns and Their Effects on the Artery Wall

TL;DR: A variety of computational, experimental, and in vivo approaches have been employed, and the results demonstrate a strong dependence on stent design, as well as effects on hemodynamics in locations of the circulatory system quite removed from the stented segment.
Journal ArticleDOI

Endothelial cell dynamics under pulsating flows: significance of high versus low shear stress slew rates (d(tau)/dt).

TL;DR: It was found that pulsatile flow significantly increased the rates at which EC elongated and realigned, compared to steady flow at ∂τ/∂t=0, and EC remodeling was faster in response to high than to low slew rates at a given tau τave.
Journal ArticleDOI

Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease.

TL;DR: In this novel quantitative study of hemodynamics in coronary aneurysms caused by Kawasaki Disease, markedly abnormal flow patterns that are associated with increased risk of thrombosis are documented.
Journal ArticleDOI

Intimal Thickness Is not Associated With Wall Shear Stress Patterns in the Human Right Coronary Artery

TL;DR: Wall shear stress does not appear to be related to intimal thickness in the 4 RCAs studied, and is not implicated in atherogenesis throughout the arterial tree, including the right coronary artery.
Journal ArticleDOI

Laminar Shear Stress Up-regulates Peroxiredoxins (PRX) in Endothelial Cells PRX 1 AS A MECHANOSENSITIVE ANTIOXIDANT

TL;DR: Results suggest that PRX 1 is a novel mechanosensitive antioxidant, playing an important role in shear-dependent regulation of endothelial biology and atherosclerosis.
References
More filters
Journal ArticleDOI

Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.

TL;DR: It is concluded that in the human carotid bifurcation, regions of moderate to high shear stress, where flow remains unidirectional and axially aligned, are relatively spared of intimal thickening.
Journal ArticleDOI

Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis.

TL;DR: It appears that wall shear rate may be a major controlling factor in the development of atheromatous lesions in man and in animals and a net flux of cholesterol from blood to wall cannot account for the observed normally occurring (quasi-steady state) and experimentally induced atheroma.
Journal ArticleDOI

The dynamic response of vascular endothelial cells to fluid shear stress.

TL;DR: Preliminary studies indicate that certain endothelial cell functions, including fluid endocytosis, cytoskeletal assembly and nonthrombogenic surface properties, also are sensitive to shear stress, which suggests that fluid mechanical forces can directly influence endothelialcell structure and function.
Journal ArticleDOI

Correlation between intimal thickness and fluid shear in human arteries

TL;DR: It is suggested that large excursions of interfacial shear, at levels too low to cause damage, may inhibit intimal thickening.
Journal ArticleDOI

Vascular endothelial morphology as an indicator of the pattern of blood flow.

TL;DR: The results obtained to date suggest that endothelial cell morphology and orientation around a branch vessel may be a natural marker or indicator of the detailed features of blood flow.
Related Papers (5)