scispace - formally typeset
Open AccessJournal ArticleDOI

Quantum Simulation

Reads0
Chats0
TLDR
The main theoretical and experimental aspects of quantum simulation have been discussed in this article, and some of the challenges and promises of this fast-growing field have also been highlighted in this review.
Abstract
Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, ie, quantum simulation Quantum simulation promises to have applications in the study of many problems in, eg, condensed-matter physics, high-energy physics, atomic physics, quantum chemistry and cosmology Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins and photons have been proposed as quantum simulators This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field

read more

Citations
More filters
Journal ArticleDOI

Magic state distillation and gate compilation in quantum algorithms for quantum chemistry

TL;DR: In this paper, the authors present a review of gate compilation and magic state distillation for quantum chemistry problems on a quantum computer with respect to the recent progress that has improved the efficiency by orders of magnitude.
Journal ArticleDOI

Implementation of a generalized controlled-NOT gate between fixed-frequency transmons

TL;DR: In this paper, two fixed-frequency Al transmons with ground-to-excited transition frequencies at 6.0714 and 6.7543 GHz were embedded in a single three-dimensional Al cavity with a fundamental mode at 7.7463 GHz.
Posted Content

Emerging quantum computing algorithms for quantum chemistry

TL;DR: A self-contained introduction to emerging algorithms for the simulation of Hamiltonian dynamics and eigenstates, with emphasis on their applications to the electronic structure in molecular systems is provided in this paper.
Journal ArticleDOI

Quantum speedup of uncoupled multiqubit open system via dynamical decoupling pulses

TL;DR: It is shown that both the non-Markovianity and the excited-state population of qubits can be controlled by DDPs to realize the quantum speedup.
Journal ArticleDOI

Nonlinear Graphene Quantum Capacitors for Electro-optics

TL;DR: In this article, the quantum capacitance property of graphene can be exploited in a two-dimensional layered capacitor configuration using graphene and boron nitride respectively as the electrodes and the insulating dielectric.
References
More filters
Journal ArticleDOI

Many-Body Physics with Ultracold Gases

TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Journal ArticleDOI

The quantum internet

TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Journal ArticleDOI

Quantum Phase Transition From a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms

TL;DR: This work observes a quantum phase transition in a Bose–Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential, and can induce reversible changes between the two ground states of the system.
Journal ArticleDOI

Cold Bosonic Atoms in Optical Lattices

TL;DR: In this paper, the Bose-Hubbard model was used to model the phase transition from the superfluid to the Mott insulator phase induced by varying the depth of the optical potential.
Journal ArticleDOI

Universal Quantum Simulators

TL;DR: Feynman's 1982 conjecture, that quantum computers can be programmed to simulate any local quantum system, is shown to be correct.
Related Papers (5)