scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Reflection Symmetry Detection by Embedding Symmetry in a Graph

TL;DR: This work exploits the estimated boundary of the object and describes a boundary pixel using only the estimated normal of the boundary segment around the pixel to embed the symmetry axes in a graph as cliques to robustly detect the symmetry axis.
Abstract: Reflection symmetry is ubiquitous in nature and plays an important role in object detection and recognition tasks. Most of the existing methods for symmetry detection extract and describe each keypoint using a descriptor and a mirrored descriptor. Two keypoints are said to be mirror symmetric key-points if the original descriptor of one keypoint and the mirrored descriptor of the other keypoint are similar. However, these methods suffer from the following issue. The background pixels around the mirror symmetric pixels lying on the boundary of an object can be different. Therefore, their descriptors can be different. However, the boundary of a symmetric object is a major component of global reflection symmetry. We exploit the estimated boundary of the object and describe a boundary pixel using only the estimated normal of the boundary segment around the pixel. We embed the symmetry axes in a graph as cliques to robustly detect the symmetry axes. We show that this approach achieves state-of-the-art results in a standard dataset.
Citations
More filters
Journal ArticleDOI

[...]

TL;DR: Wang et al. as mentioned in this paper presented two shape signature-based reflection symmetry detection methods with their theoretical underpinning and empirical evaluation, which can effectively deal with compound shapes which are challenging for traditional contour-based methods.
Abstract: • A solid theoretical foundation of R-signature and LIP-signature about symmetric properties of a given shape is represented. • A verification process is theoretically justified to remove the false candidates based on an efficient symmetry measure. • Two novel datasets (UTLN-SRA & UTLN-MRA) with single & multiple reflections are designed for evaluating symmetry detectors. • A new evaluation protocol based on a lost measure is presented to evaluate reflectional symmetry detectors. • Comprehensive evaluations have verified that our proposed detectors perform well on binary images compared to state of the art. We present two novel shape signature-based reflection symmetry detection methods with their theoretical underpinning and empirical evaluation. LIP-signature and R-signature share similar beneficial properties allowing to detect reflection symmetry directions in a high-performing manner. For the shape signature of a given shape, its merit profile is constructed to detect candidates of symmetry direction. A verification process is utilized to eliminate the false candidates by addressing Radon projections. The proposed methods can effectively deal with compound shapes which are challenging for traditional contour-based methods. To quantify the symmetric efficiency, a new symmetry measure is proposed over the range [0, 1]. Furthermore, we introduce two symmetry shape datasets with a new evaluation protocol and a lost measure for evaluating symmetry detectors. Experimental results using standard and new datasets suggest that the proposed methods prominently perform compared to state of the art.

8 citations

Journal ArticleDOI

[...]

TL;DR: In this article, a stable metric is proposed to extract subsets of consistently oriented candidate segments, whenever the underlying 2D signal appearance exhibits definite near symmetric correspondences, and the ranking of such segments on the basis of the surrounding gradient orientation specularity, in order to reflect real symmetric object boundaries.
Abstract: This work addresses the challenging problem of reflection symmetry detection in unconstrained environments. Starting from the understanding on how the visual cortex manages planar symmetry detection, it is proposed to treat the problem in two stages: i) the design of a stable metric that extracts subsets of consistently oriented candidate segments, whenever the underlying 2D signal appearance exhibits definite near symmetric correspondences; ii) the ranking of such segments on the basis of the surrounding gradient orientation specularity, in order to reflect real symmetric object boundaries. Since these operations are related to the way the human brain performs planar symmetry detection, a better correspondence can be established between the outcomes of the proposed algorithm and a human-constructed ground truth. When compared to the testing sets used in recent symmetry detection competitions, a remarkable performance gain can be observed. In additional, further validation has been achieved by conducting perceptual validation experiments with users on a newly built dataset.

1 citations

Proceedings ArticleDOI

[...]

01 Oct 2022
TL;DR: This work points out an efficient detector of reflectionally symmetric shapes by addressing a class of projection-based signatures that are structured by a generalized $\mathcal{R}_{fm}$-transform model in accordance with reflectional symmetry detection.
Abstract: Analyzing reflectionally symmetric features inside an image is one of the important processes for recognizing the peculiar appearance of natural and man-made objects, biological patterns, etc. In this work, we will point out an efficient detector of reflectionally symmetric shapes by addressing a class of projection-based signatures that are structured by a generalized $\mathcal{R}_{fm}$-transform model. To this end, we will firstly prove the $\mathcal{R}_{fm^{-}}$transform in accordance with reflectional symmetry detection. Then different corresponding $\mathcal{R}_{fm}$-signatures of binary shapes are evaluated in order to determine which the corresponding exponentiation of the $\mathcal{R}_{fm}$-transform is the best for the detection. Experimental results of detecting on single/compound contour-based shapes have validated that the exponentiation of 10 is the most discriminatory, with over 2.7% better performance on the multiple-axis shapes in comparison with the conventional one. Additionally, the proposed detector also outperforms most of other existing methods. This finding should be recommended for applications in practice.
References
More filters
Journal ArticleDOI

[...]

TL;DR: This paper investigates two fundamental problems in computer vision: contour detection and image segmentation and presents state-of-the-art algorithms for both of these tasks.
Abstract: This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by user-specified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.

4,329 citations


"Reflection Symmetry Detection by Em..." refers methods in this paper

  • [...]

Book ChapterDOI

[...]

07 May 2006
TL;DR: It is shown how symmetric pairs of features can be efficiently detected, how the symmetry bonding each pair is extracted and evaluated, and how these can be grouped into symmetric constellations that specify the dominant symmetries present in the image.
Abstract: A novel and efficient method is presented for grouping feature points on the basis of their underlying symmetry and characterising the symmetries present in an image. We show how symmetric pairs of features can be efficiently detected, how the symmetry bonding each pair is extracted and evaluated, and how these can be grouped into symmetric constellations that specify the dominant symmetries present in the image. Symmetries over all orientations and radii are considered simultaneously, and the method is able to detect local or global symmetries, locate symmetric figures in complex backgrounds, detect bilateral or rotational symmetry, and detect multiple incidences of symmetry.

370 citations


"Reflection Symmetry Detection by Em..." refers background or methods in this paper

  • [...]

  • [...]

  • [...]

  • [...]

  • [...]

Book

[...]

17 Jun 2010
TL;DR: Recognizing the fundamental relevance and group theory of symmetry has the potential to play an important role in computational sciences.
Abstract: In the arts and sciences, as well as in our daily lives, symmetry has made a profound and lasting impact. Likewise, a computational treatment of symmetry and group theory (the ultimate mathematical formalization of symmetry) has the potential to play an important role in computational sciences. Though the term Computational Symmetry was formally defined a decade ago by the first author, referring to algorithmic treatment of symmetries, seeking symmetry from digital data has been attempted for over four decades. Computational symmetry on real world data turns out to be challenging enough that, after decades of effort, a fully automated symmetry-savvy system remains elusive for real world applications. The recent resurging interests in computational symmetry for computer vision and computer graphics applications have shown promising results. Recognizing the fundamental relevance and potential power that computational symmetry affords, we offer this survey to the computer vision and computer graphics communities. This survey provides a succinct summary of the relevant mathematical theory, a historic perspective of some important symmetry-related ideas, a partial yet timely report on the state of the arts symmetry detection algorithms along with its first quantitative benchmark, a diverse set of real world applications, suggestions for future directions and a comprehensive reference list.

222 citations


"Reflection Symmetry Detection by Em..." refers background in this paper

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this article, the 3D and grey level comparison algorithms were designed to be integrated in security applications in which individuals cooperate, and the residual error after 3D matching was used as a first similarity measure.
Abstract: We address in this paper automatic face verification from 3D facial surface and grey level analysis. 3D acquisition is performed by a structured light system, adapted to face capture and allowing grey level acquisition in alignment. The 3D facial shapes are compared and the residual error after 3D matching is used as a first similarity measure. A second similarity measure is derived from grey level comparison. As expected, fusing 3D and intensity information increases verification performances. The acquisition system, the 3D and grey level comparison algorithms were designed to be integrated in security applications in which individuals cooperate.

169 citations

Proceedings ArticleDOI

[...]

16 Jun 2012
TL;DR: A new technique for extracting local features from images of architectural scenes, based on detecting and representing local symmetries, which can improve matching performance for this difficult task of matching challenging pairs of photos of urban scenes.
Abstract: We present a new technique for extracting local features from images of architectural scenes, based on detecting and representing local symmetries. These new features are motivated by the fact that local symmetries, at different scales, are a fundamental characteristic of many urban images, and are potentially more invariant to large appearance changes than lower-level features such as SIFT. Hence, we apply these features to the problem of matching challenging pairs of photos of urban scenes. Our features are based on simple measures of local bilateral and rotational symmetries computed using local image operations. These measures are used both for feature detection and for computing descriptors. We demonstrate our method on a challenging new dataset containing image pairs exhibiting a range of dramatic variations in lighting, age, and rendering style, and show that our features can improve matching performance for this difficult task.

155 citations


"Reflection Symmetry Detection by Em..." refers background in this paper

  • [...]