scispace - formally typeset
Open AccessPosted Content

Reinforcement Learning: A Survey

TLDR
A survey of reinforcement learning from a computer science perspective can be found in this article, where the authors discuss the central issues of RL, including trading off exploration and exploitation, establishing the foundations of RL via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state.
Abstract
This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.

read more

Citations
More filters
Posted Content

Designing Neural Network Architectures using Reinforcement Learning

TL;DR: MetaQNN as discussed by the authors is a meta-modeling algorithm based on reinforcement learning to automatically generate high-performing CNN architectures for a given learning task, where the learning agent is trained to sequentially choose CNN layers using $Q$-learning with an $\epsilon$-greedy exploration strategy and experience replay.
Book

Algorithms for Reinforcement Learning

TL;DR: This book focuses on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming, and gives a fairly comprehensive catalog of learning problems, and describes the core ideas, followed by the discussion of their theoretical properties and limitations.
Book

Artificial Intelligence: A New Synthesis

TL;DR: Intelligent agents are employed as the central characters in this new introductory text and Nilsson gradually increases their cognitive horsepower to illustrate the most important and lasting ideas in AI.
Journal ArticleDOI

Automating the Construction of Internet Portals with Machine Learning

TL;DR: New research in reinforcement learning, information extraction and text classification that enables efficient spidering, the identification of informative text segments, and the population of topic hierarchies are described.
Journal Article

Tree-Based Batch Mode Reinforcement Learning

TL;DR: Within this framework, several classical tree-based supervised learning methods and two newly proposed ensemble algorithms, namely extremely and totally randomized trees, are described and found that the ensemble methods based on regression trees perform well in extracting relevant information about the optimal control policy from sets of four-tuples.
References
More filters
Book

Genetic algorithms in search, optimization, and machine learning

TL;DR: In this article, the authors present the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields, including computer programming and mathematics.
Journal ArticleDOI

Machine learning

TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Book

Markov Decision Processes: Discrete Stochastic Dynamic Programming

TL;DR: Puterman as discussed by the authors provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models, focusing primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous time discrete state models.
Book

Dynamic Programming and Optimal Control

TL;DR: The leading and most up-to-date textbook on the far-ranging algorithmic methododogy of Dynamic Programming, which can be used for optimal control, Markovian decision problems, planning and sequential decision making under uncertainty, and discrete/combinatorial optimization.
Book

Parallel and Distributed Computation: Numerical Methods

TL;DR: This work discusses parallel and distributed architectures, complexity measures, and communication and synchronization issues, and it presents both Jacobi and Gauss-Seidel iterations, which serve as algorithms of reference for many of the computational approaches addressed later.
Related Papers (5)