scispace - formally typeset
Open AccessPosted Content

Reinforcement Learning: A Survey

TLDR
A survey of reinforcement learning from a computer science perspective can be found in this article, where the authors discuss the central issues of RL, including trading off exploration and exploitation, establishing the foundations of RL via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state.
Abstract
This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.

read more

Citations
More filters
Journal ArticleDOI

A nuclear reactor core fuel reload optimization using artificial ant colony connective networks

TL;DR: A parallel computational system based on the Ant Colony System, called Artificial Ant Colony Networks, is introduced to solve the core fuel reload optimization problem.
Journal ArticleDOI

The inverse classification problem

TL;DR: It is shown that the inverse classification problem is a powerful and general model which encompasses a number of different criteria, which can be used for a variety of decision support applications which have pre-determined task criteria.
Dissertation

Trust and reputation in open multi-agent systems

TL;DR: FIRE is a trust and reputation model that enables autonomous agents in open MAS to evaluate the trustworthiness of their peers and to select good partners for interactions and adaptive techniques have been introduced to dynamically adjust a number of FIRE’s parameters according to the actual situation an agent finds itself in.
Proceedings ArticleDOI

Evaluating congestion management schemes in liberalized electricity markets using an agent-based simulator

TL;DR: In this article, the authors compare different congestion management schemes in liberalized electricity markets using an agent-based simulator, by modeling market participants as adaptive agents in oligopolistic structures.
Journal ArticleDOI

Optimizing the lifetime of wireless sensor networks via reinforcement-learning-based routing:

TL;DR: Simulation results demonstrate that compared with energy-aware routing, BEER, Q-Routing, and MRL-SCSO, reinforcement-learning-based routing protocol optimizes the network lifetime in three aspects and improves the energy efficiency.
References
More filters
Book

Genetic algorithms in search, optimization, and machine learning

TL;DR: In this article, the authors present the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields, including computer programming and mathematics.
Journal ArticleDOI

Machine learning

TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Book

Markov Decision Processes: Discrete Stochastic Dynamic Programming

TL;DR: Puterman as discussed by the authors provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models, focusing primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous time discrete state models.
Book

Dynamic Programming and Optimal Control

TL;DR: The leading and most up-to-date textbook on the far-ranging algorithmic methododogy of Dynamic Programming, which can be used for optimal control, Markovian decision problems, planning and sequential decision making under uncertainty, and discrete/combinatorial optimization.
Book

Parallel and Distributed Computation: Numerical Methods

TL;DR: This work discusses parallel and distributed architectures, complexity measures, and communication and synchronization issues, and it presents both Jacobi and Gauss-Seidel iterations, which serve as algorithms of reference for many of the computational approaches addressed later.
Related Papers (5)