scispace - formally typeset
Open AccessJournal ArticleDOI

Restoring Soil Quality to Mitigate Soil Degradation

Rattan Lal
- 13 May 2015 - 
- Vol. 7, Iss: 5, pp 5875-5895
Reads0
Chats0
TLDR
In this paper, the authors proposed a strategy to minimize soil erosion, create positive organic carbon (SOC) and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro), and improve structural stability and pore geometry.
Abstract
Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC) pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro), and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility) can reduce risks of soil degradation (physical, chemical, biological and ecological) while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg) is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Impact of Long-Term Nutrient Supply Options on Soil Aggregate Stability after Nineteen Years of Rice–Wheat Cropping System

TL;DR: In this article , the integrated plant nutrition system (IPNS) and organic farming (OF) options have been considered as a sustainable strategy to sustain soil aggregate stability under adverse climatic conditions and a possible tool to restore degraded soil systems.
Journal ArticleDOI

Evaluation of Metabolomic Profile and Growth of Moringa oleifera L. Cultivated with Vermicompost under Different Soil Types

TL;DR: The results indicated that there was no significant effect on parameters such as plant height, root length and dry weight of leaves, and the application of vermicompost induced changes in the metabolomic profile, but not in the morphometric variables of Moringa oleifera.
Journal ArticleDOI

The role of soil in the contribution of food and feed

TL;DR: In this article, the authors review global patterns in soil characteristics, agricultural production and the fate of embedded soil nutrients, concluding that nitrogen-rich and organic-rich soils supported the highest crop yields, yet the efficiency of nutrient utilization was concentrated in regions with lower crop productivity and lower rates of chemical fertilizer inputs.
Journal ArticleDOI

Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils

TL;DR: In this paper , the effect of phosphogypsum (PG) on the physical properties of Luvisols and Cambisols collected from salt-affected soils in four regions in Morocco: Chichaoua, Ras El Ain, Sidi Zouine, and Sed El Masjoune.
Book ChapterDOI

Use of nanomaterials in plant nutrition

TL;DR: In this paper, the use of nanomaterials (NMs) called nanofertilizers constitute one of the categories of high efficiency fertilizers used to provide essential elements for plants directly.
References
More filters
Journal ArticleDOI

Soil carbon sequestration impacts on global climate change and food security.

TL;DR: In this article, the carbon sink capacity of the world’s agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon.
Journal ArticleDOI

Organic matter and water-stable aggregates in soils

TL;DR: In this article, the effectiveness of various binding agents at different stages in the structural organization of aggregates is described and forms the basis of a model which illustrates the architecture of an aggregate.
Journal ArticleDOI

Environmental and Economic Costs of Soil Erosion and Conservation Benefits

TL;DR: With the addition of a quarter of a million people each day, the world population's food demand is increasing at a time when per capita food productivity is beginning to decline.
Journal ArticleDOI

Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial)

TL;DR: The Soil Science Society of America (SSSA) Ad Hoc Committee on Soil Quality (S-581) as mentioned in this paper defined soil quality as "the capacity (of soil) to function".
Journal ArticleDOI

持続可能性(Sustainability)の要件

TL;DR: The Bachelor of Science in Sustainability as discussed by the authors provides the broad fundamental knowledge, skills and competencies needed to drive sustainable outcomes that address today's urgent environmental, economic and social challenges.
Related Papers (5)
Trending Questions (1)
What hazards will a decrease in soil quality cause?

A decrease in soil quality can lead to hazards like accelerated erosion, loss of soil fertility, biodiversity decline, acidification, and salinization, hindering agricultural production and ecosystem services.