scispace - formally typeset
Journal ArticleDOI

Semiempirical GGA-type density functional constructed with a long-range dispersion correction.

Stefan Grimme
- 30 Nov 2006 - 
- Vol. 27, Iss: 15, pp 1787-1799
TLDR
A new density functional of the generalized gradient approximation (GGA) type for general chemistry applications termed B97‐D is proposed, based on Becke's power‐series ansatz from 1997, and is explicitly parameterized by including damped atom‐pairwise dispersion corrections of the form C6 · R−6.
Abstract
A new density functional (DF) of the generalized gradient approximation (GGA) type for general chemistry applications termed B97-D is proposed. It is based on Becke's power-series ansatz from 1997 and is explicitly parameterized by including damped atom-pairwise dispersion corrections of the form C(6) x R(-6). A general computational scheme for the parameters used in this correction has been established and parameters for elements up to xenon and a scaling factor for the dispersion part for several common density functionals (BLYP, PBE, TPSS, B3LYP) are reported. The new functional is tested in comparison with other GGAs and the B3LYP hybrid functional on standard thermochemical benchmark sets, for 40 noncovalently bound complexes, including large stacked aromatic molecules and group II element clusters, and for the computation of molecular geometries. Further cross-validation tests were performed for organometallic reactions and other difficult problems for standard functionals. In summary, it is found that B97-D belongs to one of the most accurate general purpose GGAs, reaching, for example for the G97/2 set of heat of formations, a mean absolute deviation of only 3.8 kcal mol(-1). The performance for noncovalently bound systems including many pure van der Waals complexes is exceptionally good, reaching on the average CCSD(T) accuracy. The basic strategy in the development to restrict the density functional description to shorter electron correlation lengths scales and to describe situations with medium to large interatomic distances by damped C(6) x R(-6) terms seems to be very successful, as demonstrated for some notoriously difficult reactions. As an example, for the isomerization of larger branched to linear alkanes, B97-D is the only DF available that yields the right sign for the energy difference. From a practical point of view, the new functional seems to be quite robust and it is thus suggested as an efficient and accurate quantum chemical method for large systems where dispersion forces are of general importance.

read more

Citations
More filters
Journal ArticleDOI

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu

TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Journal ArticleDOI

The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals

TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Journal ArticleDOI

Effect of the damping function in dispersion corrected density functional theory

TL;DR: It is shown by an extensive benchmark on molecular energy data that the mathematical form of the damping function in DFT‐D methods has only a minor impact on the quality of the results and BJ‐damping seems to provide a physically correct short‐range behavior of correlation/dispersion even with unmodified standard functionals.
Journal ArticleDOI

Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections

TL;DR: The re-optimization of a recently proposed long-range corrected hybrid density functional, omegaB97X-D, to include empirical atom-atom dispersion corrections yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions.
Journal Article

Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections

TL;DR: Chai and Head-Gordon as discussed by the authors proposed a long-range corrected (LC) hybrid density functional with Damped Atom-Atom Dispersion corrections, which is called ωB97X-D.
References
More filters
Journal ArticleDOI

Development of Novel Density Functionals for Thermochemical Kinetics

TL;DR: In this article, a new density functional theory (DFT) exchange-correlation functional for the exploration of reaction mechanisms is proposed, denoted BMK (Boese-Martin for Kinetics).
Journal ArticleDOI

A density-functional model of the dispersion interaction

TL;DR: A density-functional model depending only on total density, the gradient and Laplacian of the density, and the kinetic-energy density performs as well as the explicitly orbital-dependent model, yet offers obvious computational advantages.
Journal ArticleDOI

Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment

TL;DR: In this article, an empirical formula consisting of an R−6 term is introduced, which is appropriately damped for short distances; the corresponding C6 coefficient, calculated from experimental atomic polarizabilities, can be consistently added to the total energy expression.
Journal ArticleDOI

Can (semi) local density functional theory account for the london dispersion forces

TL;DR: In this article, the reproduction of the interatomic potential in He 2, Ne 2, and Ar 2 by Kohn-Sham theory is investigated using a density functional program which can perform counterpoise corrections for both basis sets and numerical integration.
Journal ArticleDOI

A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections.

TL;DR: The model is extended to include higher-order dispersion coefficients C(8) and C(10) and performs very well for prediction of intermonomer separations and binding energies of 45 van der Waals complexes, with minimal computational cost.
Related Papers (5)