scispace - formally typeset
Journal ArticleDOI

Silicon photonic platforms for mid-infrared applications [Invited]

Reads0
Chats0
TLDR
This paper comprehensively review silicon photonics for MIR applications, with regard to the state-of-the-art achievements from various device demonstrations in different material platforms by various groups, and introduces in detail of the institute’s research and development efforts on the MIR photonic platforms.
Abstract
Silicon photonic integrated circuits for telecommunication and data centers have been well studied in the past decade, and now most related efforts have been progressing toward commercialization. Scaling up the silicon-on-insulator (SOI)-based device dimensions in order to extend the operation wavelength to the short mid-infrared (MIR) range (2–4 μm) is attracting research interest, owing to the host of potential applications in lab-on-chip sensors, free space communications, and much more. Other material systems and technology platforms, including silicon-on-silicon nitride, germanium-on-silicon, germanium-on-SOI, germanium-on-silicon nitride, sapphire-on-silicon, SiGe alloy-on-silicon, and aluminum nitride-on-insulator are explored as well in order to realize low-loss waveguide devices for different MIR wavelengths. In this paper, we will comprehensively review silicon photonics for MIR applications, with regard to the state-of-the-art achievements from various device demonstrations in different material platforms by various groups. We will then introduce in detail of our institute’s research and development efforts on the MIR photonic platforms as one case study. Meanwhile, we will discuss the integration schemes along with remaining challenges in devices (e.g., light source) and integration. A few application-oriented examples will be examined to illustrate the issues needing a critical solution toward the final production path (e.g., gas sensors). Finally, we will provide our assessment of the outlook of potential future research topics and engineering challenges along with opportunities.

read more

Citations
More filters
Journal ArticleDOI

Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things

Abstract: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore, 117608, Singapore NUS Suzhou Research Institute (NUSRI), Suzhou, 215123, China NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore
Journal ArticleDOI

Open-Access Silicon Photonics: Current Status and Emerging Initiatives

TL;DR: An overview of existing and upcoming commercial and noncommercial open-access silicon photonics technology platforms is presented and the diversity in these open- access platforms and their key differentiators are discussed.
Journal ArticleDOI

Leveraging of MEMS Technologies for Optical Metamaterials Applications

TL;DR: In this paper, the authors proposed a method to geometrically modify the parameters of the unit cell, which is also called the meta-atom that determines the property of metamaterials.
Journal ArticleDOI

Mid-infrared silicon photonic waveguides and devices [Invited]

TL;DR: Novel device architectures and improved fabrication techniques have paved a viable way for realizing low-cost, high-density, multi-function integrated devices in the MIR, which is expected to benefit several application domains in the years to come, including communication networks, sensing, and nonlinear systems.
Journal ArticleDOI

High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm.

TL;DR: This work proposes and realizes high-performance waveguide photodetectors based on bolometric/photoconductive effects by introducing an ultrathin wide silicon−graphene hybrid plasmonic waveguide, which enables efficient light absorption in graphene at 1.55 μm and beyond.
References
More filters
Journal ArticleDOI

Microring resonator channel dropping filters

TL;DR: In this article, a method of coupling of modes in time was proposed to simplify both the analysis and filter synthesis aspects of these devices, and the response of filters comprised of an arbitrarily large dumber of resonators may be written down by inspection, as a continued fraction.
Journal ArticleDOI

Optical gas sensing: a review

TL;DR: In this article, the authors present the basis for each technique, recent developments in methods and performance limitations, and present a performance comparison of different techniques, taking data reported over the preceding decade, and draw conclusions from this benchmarking.
Journal ArticleDOI

Mid-infrared photonics in silicon and germanium

TL;DR: In this article, the authors proposed a method to extend group IV photonics from near-infrared to midinfrared wavelengths using on-chip CMOS optoelectronic systems for use in spectroscopy, chemical and biological sensing, and free space communications.
Journal ArticleDOI

Large-scale nanophotonic phased array

TL;DR: This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large- scale deployment.
Journal ArticleDOI

Mid-infrared quantum cascade lasers

TL;DR: The design flexibility of quantum cascade lasers has enabled their expansion into mid-infrared wavelengths of 3-25 µm as discussed by the authors. But their performance has not yet reached the state-of-the-art in terms of power and power efficiency.
Related Papers (5)