scispace - formally typeset
Proceedings ArticleDOI

Social influence analysis in large-scale networks

TLDR
Topical Affinity Propagation (TAP) is designed with efficient distributed learning algorithms that is implemented and tested under the Map-Reduce framework and can take results of any topic modeling and the existing network structure to perform topic-level influence propagation.
Abstract
In large social networks, nodes (users, entities) are influenced by others for various reasons. For example, the colleagues have strong influence on one's work, while the friends have strong influence on one's daily life. How to differentiate the social influences from different angles(topics)? How to quantify the strength of those social influences? How to estimate the model on real large networks?To address these fundamental questions, we propose Topical Affinity Propagation (TAP) to model the topic-level social influence on large networks. In particular, TAP can take results of any topic modeling and the existing network structure to perform topic-level influence propagation. With the help of the influence analysis, we present several important applications on real data sets such as 1) what are the representative nodes on a given topic? 2) how to identify the social influences of neighboring nodes on a particular node?To scale to real large networks, TAP is designed with efficient distributed learning algorithms that is implemented and tested under the Map-Reduce framework. We further present the common characteristics of distributed learning algorithms for Map-Reduce. Finally, we demonstrate the effectiveness and efficiency of TAP on real large data sets.

read more

Citations
More filters
Journal ArticleDOI

Big Data: A Survey

TL;DR: The background and state-of-the-art of big data are reviewed, including enterprise management, Internet of Things, online social networks, medial applications, collective intelligence, and smart grid, as well as related technologies.
Proceedings ArticleDOI

Scalable influence maximization for prevalent viral marketing in large-scale social networks

TL;DR: The results from extensive simulations demonstrate that the proposed algorithm is currently the best scalable solution to the influence maximization problem and significantly outperforms all other scalable heuristics to as much as 100%--260% increase in influence spread.
Proceedings ArticleDOI

Learning influence probabilities in social networks

TL;DR: This paper proposes models and algorithms for learning the model parameters and for testing the learned models to make predictions, and develops techniques for predicting the time by which a user may be expected to perform an action.
Journal ArticleDOI

Toward Scalable Systems for Big Data Analytics: A Technology Tutorial

TL;DR: This paper presents a systematic framework to decompose big data systems into four sequential modules, namely data generation, data acquisition, data storage, and data analytics, and presents the prevalent Hadoop framework for addressing big data challenges.
Journal ArticleDOI

Vital nodes identification in complex networks

TL;DR: In this paper, the state-of-the-art algorithms for vital node identification in real networks are reviewed and compared, and extensive empirical analyses are provided to compare well-known methods on disparate real networks.
References
More filters
Journal ArticleDOI

The Strength of Weak Ties

TL;DR: In this paper, it is argued that the degree of overlap of two individuals' friendship networks varies directly with the strength of their tie to one another, and the impact of this principle on diffusion of influence and information, mobility opportunity, and community organization is explored.
Journal ArticleDOI

Latent dirichlet allocation

TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Proceedings Article

Latent Dirichlet Allocation

TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Journal ArticleDOI

MapReduce: simplified data processing on large clusters

TL;DR: This paper presents the implementation of MapReduce, a programming model and an associated implementation for processing and generating large data sets that runs on a large cluster of commodity machines and is highly scalable.
Journal ArticleDOI

Statistical mechanics of complex networks

TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.