scispace - formally typeset
Open AccessJournal ArticleDOI

Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials.

TLDR
From the measured mappings of the electric field, the interplay between the microstructure of the metamaterial lattice and the macroscopic averaged response is revealed and the mapped phase fronts within a meetingamaterial having a negative refractive index are consistent with a Macroscopic phase-in accordance with the effective medium predictions.
Abstract
We perform an experimental study of the phase and amplitude of microwaves interacting with and scattered by two-dimensional negative index metamaterials. The measurements are performed in a parallel plate waveguide apparatus at X-band frequencies (8–12 GHz), thus constraining the electromagnetic fields to two dimensions. A detection antenna is fixed to one of the plates, while a second plate with a fixed source antenna or waveguide is translated relative to the first plate. The detection antenna is inserted into, but not protruding below, the stationary plate so that fields internal to the metamaterial samples can be mapped. From the measured mappings of the electric field, the interplay between the microstructure of the metamaterial lattice and the macroscopic averaged response is revealed. For example, the mapped phase fronts within a metamaterial having a negative refractive index are consistent with a macroscopic phase—in accordance with the effective medium predictions—which travels in a direction opposite to the direction of propagation. The field maps are in excellent agreement with finite element numerical simulations performed assuming homogeneous metamaterial structures.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metamaterial Electromagnetic Cloak at Microwave Frequencies

TL;DR: This work describes here the first practical realization of a cloak of invisibility, constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies.
Journal ArticleDOI

Broadband Ground-Plane Cloak

TL;DR: An experimental realization of a cloak design that conceals a perturbation on a flat conducting plane, under which an object can be hidden, and results indicate that this type of cloak should scale well toward optical wavelengths.
Journal ArticleDOI

Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies.

TL;DR: An experimental demonstration of microwave tunneling between two planar waveguides separated by a thin ENZ channel is presented, in agreement with theory and numerical simulations.
Journal ArticleDOI

A full-parameter unidirectional metamaterial cloak for microwaves

TL;DR: This work design and experimentally characterize a two-dimensional, unidirectional cloak that makes no approximations to the underlying transformation optics formulation, yet is capable of reducing the scattering of an object ten wavelengths in size and regains the performance characteristics promised by transformation optics.
Journal ArticleDOI

An omnidirectional electromagnetic absorber made of metamaterials

TL;DR: In this article, the authors reported the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency, composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields.
References
More filters
Journal ArticleDOI

Experimental Verification of a Negative Index of Refraction

TL;DR: These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root ofɛ·μ for the frequencies where both the permittivity and the permeability are negative.
Journal ArticleDOI

Composite Medium with Simultaneously Negative Permeability and Permittivity

TL;DR: A composite medium, based on a periodic array of interspaced conducting nonmagnetic split ring resonators and continuous wires, that exhibits a frequency region in the microwave regime with simultaneously negative values of effective permeability and permittivity varepsilon(eff)(omega).
Journal ArticleDOI

Controlling Electromagnetic Fields

TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Journal ArticleDOI

Metamaterials and negative refractive index.

TL;DR: Recent advances in metamaterials research are described and the potential that these materials may hold for realizing new and seemingly exotic electromagnetic phenomena is discussed.
Related Papers (5)