scispace - formally typeset
Open AccessBook

Spectral Methods in Fluid Dynamics

TLDR
Spectral methods have been widely used in simulation of stability, transition, and turbulence as discussed by the authors, and their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed.
Abstract
Fundamental aspects of spectral methods are introduced. Recent developments in spectral methods are reviewed with an emphasis on collocation techniques. Their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed. The key role that these methods play in the simulation of stability, transition, and turbulence is brought out. A perspective is provided on some of the obstacles that prohibit a wider use of these methods, and how these obstacles are being overcome.

read more

Citations
More filters
Journal ArticleDOI

An hp‐adaptive pseudospectral method for solving optimal control problems

TL;DR: An hp‐adaptive pseudospectral method that iteratively determines the number of segments, the width of each segment, and the polynomial degree required in each segment in order to obtain a solution to a user‐specified accuracy.
Journal ArticleDOI

p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations

TL;DR: F Fourier analysis of the two-level p-multigrid algorithm for convection-diffusion shows that element line Jacobi presents a significant improvement over element Jacobi especially for high Reynolds number flows and stretched grids.
Journal ArticleDOI

Direct numerical simulation of the turbulent channel flow of a polymer solution

TL;DR: In this paper, the authors present a direct numerical simulation of a fully turbulent channel flow of a dilute polymer solution, where the polymer chains are modeled as finitely extensible and elastic dumbbells.
Journal ArticleDOI

Stability of three-dimensional boundary layers

TL;DR: In this article, the crossflow instability and crossflow/Tollmien-Schlichting wave interactions are analyzed through the numerical solution of the full three-dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep.
Journal ArticleDOI

Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence

TL;DR: Forced turbulence in a rotating frame is studied using numerical simulations in a triply periodic box in this article, where the random forcing is three dimensional and localized about an intermediate wavenumber kf, and energy is transferred to scales larger than the forcing scale when the rotation rate is large enough.
References
More filters
Book

Navier-Stokes Equations

Roger Temam
TL;DR: Schiff's base dichloroacetamides having the formula OR2 PARALLEL HCCl2-C-N ANGLE R1 in which R1 is selected from the group consisting of alkenyl, alkyl, alkynyl and alkoxyalkyl; and R2 is selected by selecting R2 from the groups consisting of lower alkylimino, cyclohexenyl-1 and lower alkynyl substituted cycloenenyl -1 as discussed by the authors.
Journal ArticleDOI

A spectral element method for fluid dynamics: Laminar flow in a channel expansion

TL;DR: In this article, a spectral element method was proposed for numerical solution of the Navier-Stokes equations, where the computational domain is broken into a series of elements, and the velocity in each element is represented as a highorder Lagrangian interpolant through Chebyshev collocation points.
Journal ArticleDOI

Numerical Simulation of Turbulent Flows

TL;DR: In this article, the Navier-Stokes equations are used to model the evolution of a turbulent mixing layer and turbulent channel flow in incompressible Newtonian fluids. And the results of simulations of homogeneous turbulence in uniform shear are presented graphically and discussed graphically.
Journal ArticleDOI

Spectral methods for problems in complex geometries

TL;DR: In this paper, a new iteration procedure is introduced to solve the full matrix equations resulting from spectral approximations to nonconstant coefficient boundary-value problems in complex geometries, and the work required to solve these spectral equations exceeds that of solving the lowest-order finite-difference approximation to the same problem by only O(N log N).

Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows

TL;DR: In this paper, a subgrid scale similarity model is developed that can account for system rotation and the main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation.