scispace - formally typeset
Open AccessBook

Spectral Methods in Fluid Dynamics

TLDR
Spectral methods have been widely used in simulation of stability, transition, and turbulence as discussed by the authors, and their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed.
Abstract
Fundamental aspects of spectral methods are introduced. Recent developments in spectral methods are reviewed with an emphasis on collocation techniques. Their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed. The key role that these methods play in the simulation of stability, transition, and turbulence is brought out. A perspective is provided on some of the obstacles that prohibit a wider use of these methods, and how these obstacles are being overcome.

read more

Citations
More filters
Journal ArticleDOI

Direct numerical simulation of'short' laminar separation bubbles with turbulent reattachment

TL;DR: In this paper, a 3D simulation of the incompressible Navier-Stokes equations is used to study flows where laminar boundary-layer separation is followed by turbulent reattachment forming a closed region known as a laminars separation bubble.
Journal ArticleDOI

Large eddy simulation of turbulent channel flows by the variational multiscale method

TL;DR: In this paper, the variational multiscale formulation of LES is applied to two-dimensional equilibrium and three-dimensional nonequilibrium channel flows, and simple, constant-coefficient Smagorinsky-type eddy viscosities, without wall damping functions, are used to model the decay of small scales.
Journal ArticleDOI

Costate Estimation by a Legendre Pseudospectral Method

TL;DR: In this paper, a Legendre pseudospectral method for directly estimating the costates of the Bolza problem encountered in optimal control theory is presented. But the method is based on calculating the state and control variables at the Legendre-Gauss-Lobatto (LGL) points.
Journal ArticleDOI

Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries

TL;DR: In this paper, a detailed analysis of the flow structure at the foremost part of the front, where no previous high-resolution data were available, was performed, based on spectral and spectral-element discretizations and compact finite differences.
References
More filters
Book

Navier-Stokes Equations

Roger Temam
TL;DR: Schiff's base dichloroacetamides having the formula OR2 PARALLEL HCCl2-C-N ANGLE R1 in which R1 is selected from the group consisting of alkenyl, alkyl, alkynyl and alkoxyalkyl; and R2 is selected by selecting R2 from the groups consisting of lower alkylimino, cyclohexenyl-1 and lower alkynyl substituted cycloenenyl -1 as discussed by the authors.
Journal ArticleDOI

A spectral element method for fluid dynamics: Laminar flow in a channel expansion

TL;DR: In this article, a spectral element method was proposed for numerical solution of the Navier-Stokes equations, where the computational domain is broken into a series of elements, and the velocity in each element is represented as a highorder Lagrangian interpolant through Chebyshev collocation points.
Journal ArticleDOI

Numerical Simulation of Turbulent Flows

TL;DR: In this article, the Navier-Stokes equations are used to model the evolution of a turbulent mixing layer and turbulent channel flow in incompressible Newtonian fluids. And the results of simulations of homogeneous turbulence in uniform shear are presented graphically and discussed graphically.
Journal ArticleDOI

Spectral methods for problems in complex geometries

TL;DR: In this paper, a new iteration procedure is introduced to solve the full matrix equations resulting from spectral approximations to nonconstant coefficient boundary-value problems in complex geometries, and the work required to solve these spectral equations exceeds that of solving the lowest-order finite-difference approximation to the same problem by only O(N log N).

Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows

TL;DR: In this paper, a subgrid scale similarity model is developed that can account for system rotation and the main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation.