scispace - formally typeset
Open AccessProceedings Article

Stealing machine learning models via prediction APIs

Reads0
Chats0
TLDR
In this paper, the authors investigate model extraction attacks in ML-as-a-service (ML-aaS) systems and show that an adversary with black-box access, but no prior knowledge of an ML model's parameters or training data, aims to duplicate the functionality of (i.e., "steal") the model.
Abstract
Machine learning (ML) models may be deemed confidential due to their sensitive training data, commercial value, or use in security applications. Increasingly often, confidential ML models are being deployed with publicly accessible query interfaces. ML-as-a-service ("predictive analytics") systems are an example: Some allow users to train models on potentially sensitive data and charge others for access on a pay-per-query basis. The tension between model confidentiality and public access motivates our investigation of model extraction attacks. In such attacks, an adversary with black-box access, but no prior knowledge of an ML model's parameters or training data, aims to duplicate the functionality of (i.e., "steal") the model. Unlike in classical learning theory settings, ML-as-a-service offerings may accept partial feature vectors as inputs and include confidence values with predictions. Given these practices, we show simple, efficient attacks that extract target ML models with near-perfect fidelity for popular model classes including logistic regression, neural networks, and decision trees. We demonstrate these attacks against the online services of BigML and Amazon Machine Learning. We further show that the natural countermeasure of omitting confidence values from model outputs still admits potentially harmful model extraction attacks. Our results highlight the need for careful ML model deployment and new model extraction countermeasures.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Membership Inference Attacks Against Machine Learning Models

TL;DR: This work quantitatively investigates how machine learning models leak information about the individual data records on which they were trained and empirically evaluates the inference techniques on classification models trained by commercial "machine learning as a service" providers such as Google and Amazon.
Proceedings ArticleDOI

Robust Physical-World Attacks on Deep Learning Visual Classification

TL;DR: This work proposes a general attack algorithm, Robust Physical Perturbations (RP2), to generate robust visual adversarial perturbations under different physical conditions and shows that adversarial examples generated using RP2 achieve high targeted misclassification rates against standard-architecture road sign classifiers in the physical world under various environmental conditions, including viewpoints.
Journal ArticleDOI

Deep learning for healthcare: review, opportunities and challenges.

TL;DR: It is suggested that deep learning approaches could be the vehicle for translating big biomedical data into improved human health and develop holistic and meaningful interpretable architectures to bridge deep learning models and human interpretability.
Proceedings ArticleDOI

Exploiting Unintended Feature Leakage in Collaborative Learning

TL;DR: In this article, passive and active inference attacks are proposed to exploit the leakage of information about participants' training data in federated learning, where each participant can infer the presence of exact data points and properties that hold only for a subset of the training data and are independent of the properties of the joint model.
References
More filters
Book

Numerical Optimization

TL;DR: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization, responding to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.
Posted Content

Distilling the Knowledge in a Neural Network

TL;DR: This work shows that it can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model and introduces a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse.
Journal ArticleDOI

Approximation by superpositions of a sigmoidal function

TL;DR: It is demonstrated that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function ofn real variables with support in the unit hypercube.
Proceedings ArticleDOI

A training algorithm for optimal margin classifiers

TL;DR: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented, applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions.
Related Papers (5)