scispace - formally typeset
Open AccessBook

Support Vector Machines

Reads0
Chats0
TLDR
This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications and provides a unique in-depth treatment of both fundamental and recent material on SVMs that so far has been scattered in the literature.
Abstract
This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications. The authors present the basic ideas of SVMs together with the latest developments and current research questions in a unified style. They identify three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and their computational efficiency compared to several other methods. Since their appearance in the early nineties, support vector machines and related kernel-based methods have been successfully applied in diverse fields of application such as bioinformatics, fraud detection, construction of insurance tariffs, direct marketing, and data and text mining. As a consequence, SVMs now play an important role in statistical machine learning and are used not only by statisticians, mathematicians, and computer scientists, but also by engineers and data analysts. The book provides a unique in-depth treatment of both fundamental and recent material on SVMs that so far has been scattered in the literature. The book can thus serve as both a basis for graduate courses and an introduction for statisticians, mathematicians, and computer scientists. It further provides a valuable reference for researchers working in the field. The book covers all important topics concerning support vector machines such as: loss functions and their role in the learning process; reproducing kernel Hilbert spaces and their properties; a thorough statistical analysis that uses both traditional uniform bounds and more advanced localized techniques based on Rademacher averages and Talagrand's inequality; a detailed treatment of classification and regression; a detailed robustness analysis; and a description of some of the most recent implementation techniques. To make the book self-contained, an extensive appendix is added which provides the reader with the necessary background from statistics, probability theory, functional analysis, convex analysis, and topology.

read more

Citations
More filters
Book

Understanding Machine Learning: From Theory To Algorithms

TL;DR: The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way in an advanced undergraduate or beginning graduate course.
Journal ArticleDOI

A kernel two-sample test

TL;DR: This work proposes a framework for analyzing and comparing distributions, which is used to construct statistical tests to determine if two samples are drawn from different distributions, and presents two distribution free tests based on large deviation bounds for the maximum mean discrepancy (MMD).
Book

Ontology Matching

TL;DR: The second edition of Ontology Matching has been thoroughly revised and updated to reflect the most recent advances in this quickly developing area, which resulted in more than 150 pages of new content.
Book ChapterDOI

Introduction to Machine Learning

TL;DR: Machine learning is evolved from a collection of powerful techniques in AI areas and has been extensively used in data mining, which allows the system to learn the useful structural patterns and models from training data as discussed by the authors.
Posted Content

Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations

TL;DR: The Visual Genome dataset is presented, which contains over 108K images where each image has an average of $$35$$35 objects, $$26$$26 attributes, and $$21$$21 pairwise relationships between objects, and represents the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answer pairs.
References
More filters
Book

The Nature of Statistical Learning Theory

TL;DR: Setting of the learning problem consistency of learning processes bounds on the rate of convergence ofLearning processes controlling the generalization ability of learning process constructing learning algorithms what is important in learning theory?
Journal ArticleDOI

Support-Vector Networks

TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Book

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

TL;DR: This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory, and will guide practitioners to updated literature, new applications, and on-line software.
Proceedings ArticleDOI

A training algorithm for optimal margin classifiers

TL;DR: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented, applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions.
Book ChapterDOI

Text Categorization with Suport Vector Machines: Learning with Many Relevant Features

TL;DR: This paper explores the use of Support Vector Machines for learning text classifiers from examples and analyzes the particular properties of learning with text data and identifies why SVMs are appropriate for this task.