scispace - formally typeset
Open AccessJournal ArticleDOI

Support-Vector Networks

Corinna Cortes, +1 more
- 15 Sep 1995 - 
- Vol. 20, Iss: 3, pp 273-297
TLDR
High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Abstract
The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data. High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild

TL;DR: AffectNet is by far the largest database of facial expression, valence, and arousal in the wild enabling research in automated facial expression recognition in two different emotion models and various evaluation metrics show that the deep neural network baselines can perform better than conventional machine learning methods and off-the-shelf facial expressions recognition systems.
Journal ArticleDOI

A Dataset for Breast Cancer Histopathological Image Classification

TL;DR: A dataset of 7909 breast cancer histopathology images acquired on 82 patients, which is now publicly available from http://web.ufpr.br/vri/breast-cancer-database, aimed at automated classification of these images in two classes, which would be a valuable computer-aided diagnosis tool for the clinician.
BookDOI

Support Vector Machines: Theory and Applications

Lipo Wang
TL;DR: This chapter discusses Kernel Discriminant Learning with Application to Face Recognition, Fast Color Texture-based Object Detection in Images: Application to License Plate Localization, and more.
Proceedings Article

Fast Marginal Likelihood Maximisation for Sparse Bayesian Models

TL;DR: This work describes a new and highly accelerated algorithm which exploits recently-elucidated properties of the marginal likelihood function to enable maximisation via a principled and efficient sequential addition and deletion of candidate basis functions.
Journal ArticleDOI

Implementation of machine-learning classification in remote sensing: an applied review

TL;DR: An overview of machine learning from an applied perspective focuses on the relatively mature methods of support vector machines, single decision trees (DTs), Random Forests, boosted DTs, artificial neural networks, and k-nearest neighbours (k-NN).
References
More filters
Journal ArticleDOI

Learning representations by back-propagating errors

TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Proceedings ArticleDOI

A training algorithm for optimal margin classifiers

TL;DR: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented, applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions.
Book

Methods of Mathematical Physics

TL;DR: In this paper, the authors present an algebraic extension of LINEAR TRANSFORMATIONS and QUADRATIC FORMS, and apply it to EIGEN-VARIATIONS.
Related Papers (5)