scispace - formally typeset
Open AccessProceedings ArticleDOI

TensorMask: A Foundation for Dense Object Segmentation

Reads0
Chats0
TLDR
It is demonstrated that the tensor view leads to large gains over baselines that ignore this structure, and leads to results comparable to Mask R-CNN, suggesting that TensorMask can serve as a foundation for novel advances in dense mask prediction and a more complete understanding of the task.
Abstract
Sliding-window object detectors that generate bounding-box object predictions over a dense, regular grid have advanced rapidly and proven popular. In contrast, modern instance segmentation approaches are dominated by methods that first detect object bounding boxes, and then crop and segment these regions, as popularized by Mask R-CNN. In this work, we investigate the paradigm of dense sliding-window instance segmentation, which is surprisingly under-explored. Our core observation is that this task is fundamentally different than other dense prediction tasks such as semantic segmentation or bounding-box object detection, as the output at every spatial location is itself a geometric structure with its own spatial dimensions. To formalize this, we treat dense instance segmentation as a prediction task over 4D tensors and present a general framework called TensorMask that explicitly captures this geometry and enables novel operators on 4D tensors. We demonstrate that the tensor view leads to large gains over baselines that ignore this structure, and leads to results comparable to Mask R-CNN. These promising results suggest that TensorMask can serve as a foundation for novel advances in dense mask prediction and a more complete understanding of the task. Code will be made available.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Image Segmentation Using Deep Learning: A Survey

TL;DR: A comprehensive review of recent pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings are provided.
Journal ArticleDOI

Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks

TL;DR: It is demonstrated that D3Net can be used to efficiently extract salient object masks from real scenes, enabling effective background-changing application with a speed of 65 frames/s on a single GPU.
Book ChapterDOI

Conditional Convolutions for Instance Segmentation

TL;DR: A simpler instance segmentation method that can achieve improved performance in both accuracy and inference speed on the COCO dataset, and outperform a few recent methods including well-tuned Mask RCNN baselines, without longer training schedules needed.
Proceedings ArticleDOI

PointRend: Image Segmentation As Rendering

TL;DR: PointRend as discussed by the authors proposes a point-based rendering module that performs segmentation predictions at adaptively selected locations based on an iterative subdivision algorithm, which produces crisp object boundaries in regions that are over-smoothed by previous methods.
Proceedings ArticleDOI

BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation

TL;DR: The proposed BlendMask can effectively predict dense per-pixel position-sensitive instance features with very few channels, and learn attention maps for each instance with merely one convolution layer, thus being fast in inference.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Book ChapterDOI

Microsoft COCO: Common Objects in Context

TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Proceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Posted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Related Papers (5)