scispace - formally typeset
Search or ask a question

Showing papers in "Reviews of Modern Physics in 2007"


Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations


Journal ArticleDOI
TL;DR: In this article, the essential aspects of coupled-cluster theory are explained and illustrated with informative numerical results, showing that the theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules.
Abstract: Today, coupled-cluster theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules. Though it was originally proposed for problems in physics, it has seen its greatest development in chemistry, enabling an extensive range of applications to molecular structure, excited states, properties, and all kinds of spectroscopy. In this review, the essential aspects of the theory are explained and illustrated with informative numerical results.

2,667 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed the original theory and its improvements, and a few examples of experimental two-qubit gates are given, and the use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
Abstract: Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.

2,483 citations


Journal ArticleDOI
TL;DR: In this article, the physics of spins in quantum dots containing one or two electrons, from an experimentalist's viewpoint, are described, and various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements.
Abstract: The canonical example of a quantum-mechanical two-level system is spin. The simplest picture of spin is a magnetic moment pointing up or down. The full quantum properties of spin become apparent in phenomena such as superpositions of spin states, entanglement among spins, and quantum measurements. Many of these phenomena have been observed in experiments performed on ensembles of particles with spin. Only in recent years have systems been realized in which individual electrons can be trapped and their quantum properties can be studied, thus avoiding unnecessary ensemble averaging. This review describes experiments performed with quantum dots, which are nanometer-scale boxes defined in a semiconductor host material. Quantum dots can hold a precise but tunable number of electron spins starting with 0, 1, 2, etc. Electrical contacts can be made for charge transport measurements and electrostatic gates can be used for controlling the dot potential. This system provides virtually full control over individual electrons. This new, enabling technology is stimulating research on individual spins. This review describes the physics of spins in quantum dots containing one or two electrons, from an experimentalist’s viewpoint. Various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements. Furthermore, experimental techniques are discussed that allow for 1 the rotation of an electron spin into a superposition of up and down, 2 the measurement of the quantum state of an individual spin, and 3 the control of the interaction between two neighboring spins by the Heisenberg exchange interaction. Finally, the physics of the relevant relaxation and dephasing mechanisms is reviewed and experimental results are compared with theories for spin-orbit and hyperfine interactions. All these subjects are directly relevant for the fields of quantum information processing and spintronics with single spins i.e., single spintronics.

2,389 citations


Journal ArticleDOI
TL;DR: In this paper, the physics of Anderson transition between localized and metallic phases in disordered systems is reviewed, including both metal-insulator transitions and quantum-Hall-type transitions between phases with localized states.
Abstract: The physics of Anderson transitions between localized and metallic phases in disordered systems is reviewed The term ``Anderson transition'' is understood in a broad sense, including both metal-insulator transitions and quantum-Hall-type transitions between phases with localized states The emphasis is put on recent developments, which include: multifractality of critical wave functions, criticality in the power-law random banded matrix model, symmetry classification of disordered electronic systems, mechanisms of criticality in quasi-one-dimensional and two-dimensional systems and survey of corresponding critical theories, network models, and random Dirac Hamiltonians Analytical approaches are complemented by advanced numerical simulations

1,505 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the instabilities of the Fermi-liquid state of conduction electrons in metals with particular emphasis on magnetic quantum critical points, with the aim of assessing the validity of presently available theory.
Abstract: This review discusses instabilities of the Fermi-liquid state of conduction electrons in metals with particular emphasis on magnetic quantum critical points. Both the existing theoretical concepts and experimental data on selected materials are presented; with the aim of assessing the validity of presently available theory. After briefly recalling the fundamentals of Fermi-liquid theory, the local Fermi-liquid state in quantum impurity models and their lattice versions is described. Next, the scaling concepts applicable to quantum phase transitions are presented. The Hertz-Millis-Moriya theory of quantum phase transitions is described in detail. The breakdown of the latter is analyzed in several examples. In the final part experimental data on heavy-fermion materials and transition-metal alloys are reviewed and confronted with existing theory.

1,420 citations


Journal ArticleDOI
TL;DR: In this paper, the electronic and transport properties of carbon nanotubes are reviewed, and the fundamental aspects of conduction regimes and transport length scales are presented using simple models of disorder, with the derivation of a few analytic results concerning specific situations of short and long-range static perturbations.
Abstract: This article reviews the electronic and transport properties of carbon nanotubes. The focus is mainly theoretical, but when appropriate the relation with experimental results is mentioned. While simple band-folding arguments will be invoked to rationalize how the metallic or semiconducting character of nanotubes is inferred from their topological structure, more sophisticated tight-binding and ab initio treatments will be introduced to discuss more subtle physical effects, such as those induced by curvature, tube-tube interactions, or topological defects. The same approach will be followed for transport properties. The fundamental aspects of conduction regimes and transport length scales will be presented using simple models of disorder, with the derivation of a few analytic results concerning specific situations of shortand long-range static perturbations. Further, the latest developments in semiempirical or ab initio simulations aimed at exploring the effect of realistic static scatterers chemical impurities, adsorbed molecules, etc. or inelastic electron-phonon interactions will be emphasized. Finally, specific issues, going beyond the noninteracting electron model, will be addressed, including excitonic effects in optical experiments, the Coulomb-blockade regime, and the Luttinger liquid, charge density waves, or superconducting transition.

1,249 citations


Journal ArticleDOI
TL;DR: In this paper, the interaction of light with two-dimensional periodic arrays of particles and holes is analyzed and the role of plasmons in these types of structures through analytical considerations.
Abstract: This Colloquium analyzes the interaction of light with two-dimensional periodic arrays of particles and holes. The enhanced optical transmission observed in the latter and the presence of surface modes in patterned metal surfaces is thoroughly discussed. A review of the most significant discoveries in this area is presented first. A simple tutorial model is then formulated to capture the essential physics involved in these phenomena, while allowing analytical derivations that provide deeper insight. Comparison with more elaborated calculations is offered as well. Finally, hole arrays in plasmon-supporting metals are compared to perforated perfect conductors, thus assessing the role of plasmons in these types of structures through analytical considerations. The developments that have been made in nanophotonics areas related to plasmons in nanostructures, extraordinary optical transmission in hole arrays, complete resonant absorption and emission of light, and invisibility in structured metals are illustrated in this Colloquium in a comprehensive, tutorial fashion.

1,156 citations


Journal ArticleDOI
TL;DR: The nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas as mentioned in this paper, and they have been used to describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetization with arbitrary magnetic geometry.
Abstract: Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic the- ory are based on three important pillars: (1) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotive-like terms; (2) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov dis- tribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms derived from the quadratic nonlinearities in the gyrocenter Hamiltonian; and (3) an exact energy conservationlaw for the gyrokineticVlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on the rigorous applications of Lagrangian and Hamiltonian Lie-transform perturba- tion methods used in the variationalderivationof nonlineargyrokineticVlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations, which describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry, are also discussed.

1,010 citations


Journal ArticleDOI
TL;DR: The use of tunneling microscopy and spectroscopy has played a central role in the experimental verification of the microscopic theory of superconductivity in classical superconductors as discussed by the authors.
Abstract: Tunneling spectroscopy has played a central role in the experimental verification of the microscopic theory of superconductivity in classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy and spectroscopy (STM and STS) on these compounds allowed the main difficulties to be overcome. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. The crucial efforts to gain control over the technique and to obtain reproducible results are first recalled. Then a discussion on how the STM and STS techniques have contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors is presented: the unusually large gap values and the absence of scaling with the critical temperature, the pseudogap and its relation to superconductivity, the unprecedented small size of the vortex cores and its influence on vortex matter, the unexpected electronic properties of the vortex cores, and the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states and in the vortex cores.

790 citations


Journal ArticleDOI
TL;DR: This paper reviews the role of reference framesmore and superselection rules in the theory of quantum-information processing and finds that quantum unspeakable information becomes a new kind of resource that can be manipulated, depleted, quantified, etc.
Abstract: Recently, there has been much interest in a new kind of ``unspeakable'' quantum information that stands to regular quantum information in the same way that a direction in space or a moment in time stands to a classical bit string: the former can only be encoded using particular degrees of freedom while the latter are indifferent to the physical nature of the information carriers. The problem of correlating distant reference frames, of which aligning Cartesian axes and synchronizing clocks are important instances, is an example of a task that requires the exchange of unspeakable information and for which it is interesting to determine the fundamental quantum limit of efficiency. There have also been many investigations into the information theory that is appropriate for parties that lack reference frames or that lack correlation between their reference frames, restrictions that result in global and local superselection rules. In the presence of these, quantum unspeakable information becomes a new kind of resource that can be manipulated, depleted, quantified, etc. Methods have also been developed to contend with these restrictions using relational encodings, particularly in the context of computation, cryptography, communication, and the manipulation of entanglement. This paper reviews the role of reference frames and superselection rules in the theory of quantum-information processing.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive description of the basic concepts and fabrication techniques of microtraps together with early pioneering experiments, emphasis is placed on current experiments on degenerate quantum gases.
Abstract: Trapping and manipulating ultracold atoms and degenerate quantum gases in magnetic micropotentials is reviewed. Starting with a comprehensive description of the basic concepts and fabrication techniques of microtraps together with early pioneering experiments, emphasis is placed on current experiments on degenerate quantum gases. This includes the loading of quantum gases in microtraps, coherent manipulation, and transport of condensates together with recently reported experiments on matter-wave interferometry on a chip. Theoretical approaches for describing atoms in waveguides and beam splitters are briefly summarized, and, finally, the interaction between atoms and the surface of microtraps is covered in some detail.

Journal ArticleDOI
TL;DR: In this paper, a general formalism for the calculation of the power spectral density for the fluctuating electromagnetic field is presented and applied to the radiative heat transfer and the van der Waals friction using both the semiclassical theory of the fluctuated electromagnetic field and quantum field theory.
Abstract: All material bodies are surrounded by a fluctuating electromagnetic field because of the thermal and quantum fluctuations of the current density inside them. Close to the surface of planar sources (when the distance $d⪡{\ensuremath{\lambda}}_{T}=c\ensuremath{\hbar}∕{k}_{B}T$), thermal radiation can be spatially and temporally coherent if the surface can support surface modes like surface plasmon polaritons, surface phonon polaritons, or adsorbate vibrational modes. The fluctuating field is responsible for important phenomena such as radiative heat transfer, the van der Waals interaction, and the van der Waals friction between bodies. A general formalism for the calculation of the power spectral density for the fluctuating electromagnetic field is presented and applied to the radiative heat transfer and the van der Waals friction using both the semiclassical theory of the fluctuating electromagnetic field and quantum field theory. The radiative heat transfer and the van der Waals friction are greatly enhanced at short separations $(d⪡{\ensuremath{\lambda}}_{T})$ between the bodies due to the evanescent electromagnetic waves. Particularly strong enhancement occurs if the surface of the body can support localized surface modes like surface plasmons, surface polaritons, or adsorbate vibrational modes. An electromagnetic field outside a moving body can also be created by static charges which are always present on the surface of the body due to inhomogeneities, or due to a bias voltage. This electromagnetic field produces electrostatic friction which can be greatly enhanced if on the surface of the body there is a two-dimensional electron or hole system, or an incommensurate adsorbed layer of ions exhibiting acoustic vibrations. Applications of radiative heat transfer and noncontact friction to scanning probe spectroscopy are discussed. The theory gives a tentative explanation for the experimental noncontact friction data.

Journal ArticleDOI
TL;DR: In this paper, a review of recent theoretical advances in the study of granular metals is presented, emphasizing the interplay of disorder, quantum effects, fluctuations, and effects of confinement.
Abstract: Granular metals are arrays of metallic particles of a size ranging usually from a few to hundreds of nanometers embedded into an insulating matrix. Metallic granules are often viewed as artificial atoms. Accordingly, granular arrays can be treated as artificial solids with programmable electronic properties. The ease of adjusting electronic properties of granular metals assures them an important role for nanotechnological applications and makes them most suitable for fundamental studies of disordered solids. This review discusses recent theoretical advances in the study of granular metals, emphasizing the interplay of disorder, quantum effects, fluctuations, and effects of confinement. These key elements are quantified by the tunneling conductance between granules $g$, the charging energy of a single granule ${E}_{c}$, the mean level spacing within a granule $\ensuremath{\delta}$, and the mean electronic lifetime within the granule $\ensuremath{\hbar}∕g\ensuremath{\delta}$. By tuning the coupling between granules the system can be made either a good metal for $gg{g}_{c}=(1∕2\ensuremath{\pi}d)\mathrm{ln}({E}_{c}∕\ensuremath{\delta})$ ($d$ is the system dimensionality), or an insulator for $gl{g}_{c}$. The metallic phase in its turn is governed by the characteristic energy $\ensuremath{\Gamma}=g\ensuremath{\delta}$: at high temperatures $Tg\ensuremath{\Gamma}$ the resistivity exhibits universal logarithmic temperature behavior specific to granular materials, while at $Tl\ensuremath{\Gamma}$ the transport properties are those generic for all disordered metals. In the insulator phase the transport exhibits a variety of activation behaviors including the long-puzzling $\ensuremath{\sigma}\ensuremath{\sim}\mathrm{exp}[\ensuremath{-}({T}_{0}∕T{)}^{1∕2}]$ hopping conductivity. Superconductivity adds to the richness of the observed phases via one more energy parameter $\ensuremath{\Delta}$. Using a wide range of recently developed theoretical approaches, it is possible to obtain a detailed understanding of the electronic transport and thermodynamic properties of granular materials, as is required for their applications.

Journal ArticleDOI
TL;DR: Inelastic light scattering is an intensively used tool in the study of electronic properties of solids as discussed by the authors, which provides new insights into anisotropic and complex many-body behavior of electrons in various systems.
Abstract: Inelastic light scattering is an intensively used tool in the study of electronic properties of solids. Triggered by the discovery of high-temperature superconductivity in the cuprates and by new developments in instrumentation, light scattering in both the visible (Raman effect) and x-ray part of the electromagnetic spectrum has become a method complementary to optical (infrared) spectroscopy while providing additional and relevant information. The main purpose of the review is to position Raman scattering with regard to single-particle methods like angle-resolved photoemission spectroscopy, and other transport and thermodynamic measurements in correlated materials. Particular focus will be placed on photon polarizations and the role of symmetry to elucidate the dynamics of electrons in different regions of the Brillouin zone. This advantage over conventional transport (usually measuring averaged properties) provides new insights into anisotropic and complex many-body behavior of electrons in various systems. Recent developments in the theory of electronic Raman scattering in correlated systems and experimental results in paradigmatic materials such as the A15 superconductors, magnetic and paramagnetic insulators, compounds with competing orders, as well as the cuprates with high superconducting transition temperatures are reviewed. An overview of the manifestations of complexity in the Raman response due to the impact of correlations and developing competing orders is presented. In a variety of materials, observations which may be understood and a summary of important open questions that pave the way to a detailed understanding of correlated electron systems, are discussed.

Journal ArticleDOI
TL;DR: In this article, the authors present the mechanisms through which noise induces, enhances, and sustains ordered behavior in passive and active nonlinear media, and different spatiotemporal phenomena are described resulting from these effects.
Abstract: Natural systems are undeniably subject to random fluctuations, arising from either environmental variability or thermal effects. The consideration of those fluctuations supposes to deal with noisy quantities whose variance might at times be a sizable fraction of their mean levels. It is known that, under these conditions, noisy fluctuations can interact with the system's nonlinearities to render counterintuitive behavior, in which an increase in the noise level produces a more regular behavior. In systems with spatial degrees of freedom, this regularity takes the form of spatiotemporal order. An overview is presented of the mechanisms through which noise induces, enhances, and sustains ordered behavior in passive and active nonlinear media, and different spatiotemporal phenomena are described resulting from these effects. The general theoretical framework used in the analysis of these effects is reviewed, encompassing the theory of stochastic partial differential equations and coupled sets of ordinary stochastic differential equations. Experimental observations of self-organized behavior arising out of noise are also described, and details on the numerical algorithms needed in the computer simulation of these problems are given.

Journal ArticleDOI
TL;DR: In this paper, the authors review the debate and its eventual conclusion: no electromagnetic wave energy-momentum tensor is complete on its own, and when the appropriate accompanying energymomentity tensor for the material medium is also considered, experimental predictions of all the various proposed tensors will always be the same, and the preferred form is therefore effectively a matter of personal choice.
Abstract: Almost a hundred years ago, two different expressions were proposed for the energy-momentum tensor of an electromagnetic wave in a dielectric. Minkowski's tensor predicted an increase in the linear momentum of the wave on entering a dielectric medium, whereas Abraham's tensor predicted its decrease. Theoretical arguments were advanced in favour of both sides, and experiments proved incapable of distinguishing between the two. Yet more forms were proposed, each with their advocates who considered the form that they were proposing to be the one true tensor. This paper reviews the debate and its eventual conclusion: that no electromagnetic wave energy-momentum tensor is complete on its own. When the appropriate accompanying energy-momentum tensor for the material medium is also considered, experimental predictions of all the various proposed tensors will always be the same, and the preferred form is therefore effectively a matter of personal choice.

Journal ArticleDOI
TL;DR: In this paper, a long-standing problem of restricted diffusion under arbitrary magnetic field is reformulated in terms of multiple correlation functions of the reflected Brownian motion, and many classical results are retrieved, extended, and critically discussed.
Abstract: Restricted diffusion is a common feature of many physicochemical, biological, and industrial processes. Nuclear magnetic resonance techniques are often used to survey the atomic or molecular motion in confining media by applying inhomogeneous magnetic fields to encode the trajectories of spin-bearing particles. The diversity and complexity of diffusive NMR phenomena, observed in experiments, result from the specific properties of reflected Brownian motion. Here the focus is on the mathematical aspects of this stochastic process, their physical interpretations, and their practical applications. The main achievements in this field, from Hahn’s discovery of spin echoes to present-day research, are presented in a unified mathematical language. A long-standing problem of restricted diffusion under arbitrary magnetic field is reformulated in terms of multiple correlation functions of the reflected Brownian motion. Many classical results are retrieved, extended, and critically discussed.

Journal ArticleDOI
TL;DR: In this article, the merging of coherent control and adiabatic passage (AP) is discussed and the type of problems that can be solved using the resulting coherently controlled AP method are discussed.
Abstract: The merging of coherent control (CC) and adiabatic passage (AP) and the type of problems that can be solved using the resulting coherently controlled adiabatic passage (CCAP) method are discussed. The discussion starts with the essence of CC as the guiding of a quantum system to arrive at a given final state via a number of different quantum pathways. The guiding is done by ``tailor-made'' external laser fields. Selectivity in a host of physical and chemical processes is shown to be achieved by controlling the interference between such quantum pathways. The AP process is then discussed, in which a system is navigated adiabatically along a single quantum pathway, resulting in a complete population transfer between two energy eigenstates. The merging of the two techniques (CCAP) is shown to achieve both selectivity and completeness. Application of CCAP to the solution of the nondegenerate quantum control problem is first discussed and shown that it is possible to completely transfer population from an initial wave packet of arbitrary shape, composed of a set of nondegenerate energy eigenstates, to a final arbitrary wave packet, also composed of nondegenerate states. The treatment is then extended to systems with degenerate states and shown how to induce isomerization between the broken-symmetry local minima of a Jahn-Teller ${\mathrm{Al}}_{3}\mathrm{O}$ molecule. These approaches can be further generalized to situations with many initial, intermediate, and final states and applied to quantum coding and decoding problems. CCAP is then applied to cyclic population transfer (CPT), induced by coupling three states of a chiral molecule in a cyclic fashion, $\ensuremath{\mid}1⟩\ensuremath{\leftrightarrow}\ensuremath{\mid}2⟩\ensuremath{\leftrightarrow}\ensuremath{\mid}3⟩\ensuremath{\leftrightarrow}\ensuremath{\mid}1⟩$. Interference between two adiabatic pathways in CPT allows for a complete population transfer, coupled with multichannel selectivity, by virtue of its phase sensitivity. CPT can be used to show the purification of mixtures of right-handed and left-handed chiral molecules. Finally, quantum-field coherent control is introduced, where CCAP is extended to the use of nonclassical light. This emerging field may be used to generate new types of entangled radiation-matter states.

Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress in understanding crumpling, in which elastic membranes or sheets subject to structureless forces develop sharply curved structure over a small fraction of their surface.
Abstract: This paper reviews recent progress in understanding phenomena such as crumpling, in which elastic membranes or sheets subject to structureless forces develop sharply curved structure over a small fraction of their surface. In the limit of zero thickness, these structures become singular. After reviewing several related phenomena, the paper recalls the physical elements that give rise to the singular behavior: elasticity and the nearly inextensible behavior of thin sheets. This singular behavior has counterparts in higher dimensions. Then the paper discusses the most basic of these singularities, the vertex. The paper recounts mathematical progress in describing the $d$-cone, a simple realization of a vertex. After discussing the size of the core that governs departure from singularity, the paper concludes that fundamental understanding is lacking. It points out further mysterious behavior at the region where a $d$-cone is supported. Next comes a discussion of an emergent singularity that appears when two or more vertices are present: the stretching ridge. The paper offers several explanations of the scale of this singularity, ranging from qualitative scaling arguments to a formal asymptotic analysis. It discusses recent experiments and theories about the interaction of ridges and vertices and reviews evidence that these ridges dominate the mechanics of crumpled sheets.

Journal ArticleDOI
TL;DR: In this article, the authors summarize major advances in the critical solitons in supersymmetric theories and their implications for understanding basic dynamical regularities of non-supersymmetric theory.
Abstract: In the last decade it became clear that methods and techniques based on supersymmetry provide deep insights in quantum chromodynamics and other supersymmetric and non-supersymmetric gauge theories at strong coupling. In this review we summarize major advances in the critical (Bogomol'nyi-Prasad-Sommerfeld-saturated, BPS for short) solitons in supersymmetric theories and their implications for understanding basic dynamical regularities of non-supersymmetric theories. After a brief introduction in the theory of critical solitons (including a historical introduction) we focus on three topics: (i) non-Abelian strings in N=2 and confined monopoles; (ii) reducing the level of supersymmetry; and (iii) domain walls as D brane prototypes.

Journal ArticleDOI
TL;DR: The present article focuses on the most important and interesting aspects of the physics of structured macromolecules, highlighting various manifestations of the helical motif in their structure, elasticity, interactions with counterions, aggregation, and polyand mesomorphic transitions.
Abstract: Helices are essential building blocks of living organisms, be they molecular fragments of proteins -helices , macromolecules DNA and collagen , or multimolecular assemblies microtubules and viruses . Their interactions are involved in packing of meters of genetic material within cells and phage heads, recognition of homologous genes in recombination and DNA repair, stability of tissues, and many other processes. Helical molecules form a variety of mesophases in vivo and in vitro. Recent structural studies, direct measurements of intermolecular forces, single-molecule manipulations, and other experiments have accumulated a wealth of information and revealed many puzzling physical phenomena. It is becoming increasingly clear that in many cases the physics of biological helices cannot be described by theories that treat them as simple, unstructured polyelectrolytes. The present article focuses on the most important and interesting aspects of the physics of structured macromolecules, highlighting various manifestations of the helical motif in their structure, elasticity, interactions with counterions, aggregation, and polyand mesomorphic transitions.

Journal ArticleDOI
TL;DR: There has been a lot of work on the study of the entanglement complexity of polymers within the statistical mechanics framework as mentioned in this paper, and a review on this topic is given here stressing the main results obtained and describing the tools most used with this approach.
Abstract: Topological entanglement in polymers and biopolymers is a topic that involves different fields of science such as chemistry, biology, physics, and mathematics. One of the main issues in this topic is to understand how the entanglement complexity can depend on factors such as the degree of polymerization, the quality of the solvent, and the temperature or the degree of confinement of the macromolecule. In this respect a statistical approach to the problem is natural and in the last few years there has been a lot of work on the study of the entanglement complexity of polymers within the statistical mechanics framework. A review on this topic is given here stressing the main results obtained and describing the tools most used with this approach.


Journal ArticleDOI
TL;DR: In this article, the authors introduce a coherent theory of the counterintuitive phenomena of dynamical destabilization under the action of dissipation, grounded on the Thomson-Tait-Chetayev and Merkin theorems and on the geometric understanding introduced in this paper.
Abstract: The goal of this work is to introduce a coherent theory of the counterintuitive phenomena of dynamical destabilization under the action of dissipation. While the existence of one class of dissipation-induced instabilities was known to Sir Thomson (Lord Kelvin), it was not realized until recently that there is another major type of these phenomena hinted at by one of Merkin's theorems; in fact, these two cases exhaust all the generic possibilities. The theory grounded on the Thomson-Tait-Chetayev and Merkin theorems and on the geometric understanding introduced in this paper leads to the conclusion that ubiquitous dissipation is one of the paramount mechanisms by which instabilities develop in nature. Along with a historical review, the main theoretical achievements are put in a general context, thus unifying the current knowledge in this area and the multitude of relevant physical problems scattered over a vast literature. This general view also highlights the striking connection to various areas of mathematics. To appeal to the reader's intuition and experience, a large number of motivating examples are provided. The paper contains some new unpublished results and insights, and, finally, open questions are formulated to provide an impetus for future studies. While this review focuses on the finite-dimensional case, where the theory is relatively complete, a brief discussion of the current state of knowledge in the infinite-dimensional case, typified by partial differential equations, is also given.

Journal ArticleDOI
TL;DR: A review of the progress in using the low-gravity environment of space to explore critical phenomena and test modern theoretical predictions is provided in this paper, where a number of significant experiments have been performed in low-Earth orbit.
Abstract: This review provides an overview of the progress in using the low-gravity environment of space to explore critical phenomena and test modern theoretical predictions. Gravity-induced variations in the hydrostatic pressure and the resulting density gradients adversely affect ground-based measurements near fluid critical points. Performing measurements in a low-gravity environment can significantly reduce these difficulties. A number of significant experiments have been performed in low-Earth orbit. Experiments near the lambda transition in liquid helium explored the regime of large correlation lengths and tested the theoretical predictions to a level of precision that could not be obtained on Earth. Other studies have validated theoretical predictions for the divergence in the viscosity as well as the unexpected critical speeding up of the thermal equilibrium process in pure fluids near the liquid-gas critical point. We describe the scientific content of previously flown low-gravity investigations of critical phenomena as well as those in the development stage, and associated ground-based work.

Journal ArticleDOI
TL;DR: The Kapitza-Dirac effect is often described as diffraction of free electrons from a standing wave of light or stimulated Compton scattering as discussed by the authors, which leads to paradoxical conclusions.
Abstract: The observation of the Kapitza-Dirac effect raises conceptual, theoretical, and experimental questions. The Kapitza-Dirac effect is often described as diffraction of free electrons from a standing wave of light or stimulated Compton scattering. However, for the two-color Kapitza-Dirac effect these two interpretations appear to lead to paradoxical conclusions. The discussion of this paradox deepens our understanding of both of these versions of the Kapitza-Dirac effect.

Journal ArticleDOI
TL;DR: The available atomic data used for interpreting and modeling x-ray observations can be divided into several levels of detail, ranging from compilations which can be used with direct inspection of raw data, such as line finding lists, to synthetic spectra which attempt to fit to an entire observed dataset simultaneously as mentioned in this paper.
Abstract: The available atomic data used for interpreting and modeling x-ray observations are reviewed The applications for these data can be divided into several levels of detail, ranging from compilations which can be used with direct inspection of raw data, such as line finding lists, to synthetic spectra which attempt to fit to an entire observed dataset simultaneously This review covers cosmic sources driven by both electron ionization and photoionization and touches briefly on planetary surfaces and atmospheres The applications to x-ray astronomy, the available data, and recommendations for astronomical users are all reviewed, and an attempt to point out the applications where the shortcomings are greatest is also given

Journal ArticleDOI
TL;DR: In this article, the existence of chaos is reconciled with the known dynamical features of spherical nuclei by the shell model plus a residual interaction, where the matrix elements of the residual interaction are taken to be random variables.
Abstract: Chaos occurs in quantum systems if the statistical properties of the eigenvalue spectrum coincide with predictions of random-matrix theory. Chaos is a typical feature of atomic nuclei and other self-bound Fermi systems. How can the existence of chaos be reconciled with the known dynamical features of spherical nuclei? Such nuclei are described by the shell model (a mean-field theory) plus a residual interaction. The question is answered using a statistical approach (the two-body random ensemble): The matrix elements of the residual interaction are taken to be random variables. Chaos is shown to be a generic feature of the ensemble and some of its properties are displayed, emphasizing those which differ from standard random-matrix theory. In particular, the existence of correlations among spectra carrying different quantum numbers is demonstrated. These are subject to experimental verification.

Journal ArticleDOI
TL;DR: In contrast to the well-known Fermi-liquid theory of three dimensions, interacting one-dimensional and quasi-one-dimensional systems of fermions are described at low energy by an effective theory known as Luttinger liquid theory as discussed by the authors.
Abstract: In contrast to the well-known Fermi-liquid theory of three dimensions, interacting one-dimensional and quasi-one-dimensional systems of fermions are described at low energy by an effective theory known as Luttinger liquid theory This theory is expressed in terms of collective many-body excitations that show exotic behavior such as spin-charge separation Luttinger liquid theory is commonly applied on the premise that “low energy” describes both the spin and charge sectors However, when the interactions in the system are very strong, as they typically are at low particle densities, the ratio of spin to charge energy may become exponentially small It is then possible at very low temperatures for the single-spin excitation energy to be low compared to the characteristic single excitation charge energy, but still high compared to the characteristic spin energy This energy window of near ground-state charge degrees of freedom but highly thermally excited spin degrees of freedom is called a spin-incoherent Luttinger liquid The spin-incoherent Luttinger liquid exhibits a higher degree of universality than the Luttinger liquid and its properties are qualitatively distinct In this Colloquium some recent theoretical developments in the field are detailed and experimental indications of such a regime in gated semiconductor quantum wires are described