scispace - formally typeset
Journal ArticleDOI

The spin-conserved reaction CH+N2→H+NCN: A major pathway to prompt no studied by quantum/statistical theory calculations and kinetic modeling of rate constant

Lyudmila V. Moskaleva, +1 more
- Vol. 28, Iss: 2, pp 2393-2401
Reads0
Chats0
TLDR
In this article, a new spinconserved path for the CH(2H)+N2 reaction at temperatures relevant to prompt NO formation has been theoretically investigated by means of ab initio MO calculations at the G2M level of theory.
Abstract
A new spin-conserved path for the CH(2H)+N2 reaction at temperatures relevant to prompt NO formation has been theoretically investigated by means of ab initio MO calculations at the G2M level of theory. The result of the calculation reveals that the CH(2H)+N2 reaction takes place primarily via the ground electronic doublet potential energy surface, producing H+NCN instead of the commonly assumed, spin-forbidden HCN+N(4S) products. The overall rate constant for NCN production has been computed by a multichamel canonical variational Rice-Ramsperger-Kassel-Marcus theory calculation for the temperature range 1500–4000 K at 0.5–2 atm pressure: k3=2.22×107 T1.48 exp (−11760/T) cm3/(mol·s). The theoretically predicted rate constant was found to be in good agreement with high-temperature shock tube data kinetically modeled with the new mechahism that includes NCN reactions. In addition, k, was also found to be consistent with the apparent rate constants previously modeled for prompt NO formation in several flamer studies.

read more

Citations
More filters
Journal ArticleDOI

Fuel nitrogen conversion in solid fuel fired systems

TL;DR: In this article, the effect of fuel characteristics, devolatilization conditions and combustion mode on the oxidation selectivity towards NO and N 2 is evaluated and even under idealized conditions, such as a laminar pulverized-fuel flame, the governing mechanisms for fuel nitrogen conversion are not completely understood.
Journal ArticleDOI

Modeling nitrogen chemistry in combustion

TL;DR: In this paper, a review of the current understanding of the mechanisms that are responsible for combustion-generated nitrogen-containing air pollutants is discussed, along with the chemistry of NO removal processes such as reburning and selective non-catalytic reduction of NO.
Journal ArticleDOI

Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism

TL;DR: In this paper, a detailed reaction mechanism for small hydrocarbons combustion with possibly full implementation of available kinetic data related to the prompt NO route via NCN was presented, which can accurately predict the NO formation in lean and rich flames of methane, ethylene, ethane and propane.
Journal ArticleDOI

Unravelling combustion mechanisms through a quantitative understanding of elementary reactions

TL;DR: A review of the role of reaction kinetics in combustion chemistry traces the historical evolution and present state of qualitative and quantitative understanding of a number of reaction systems, starting from the H2-O2 system, in particular from the reaction between H and O2, mechanisms and key reactions for soot formation, for the appearance of NOx, and for processes of peroxy radicals in hydrocarbon oxidation are illustrated as mentioned in this paper.
Journal ArticleDOI

Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems

TL;DR: In this article, the authors highlight three areas where quantitative sensing based on laser absorption has had strong influence: chemical kinetics, propulsion, and practical energy systems, and provide an overview of the current power and future potential of these modern diagnostic tools.
References
More filters
Journal ArticleDOI

Density‐functional thermochemistry. III. The role of exact exchange

TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Journal ArticleDOI

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

TL;DR: Numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, show that density-functional formulas for the correlation energy and correlation potential give correlation energies within a few percent.
Journal ArticleDOI

Gaussian-2 theory for molecular energies of first- and second-row compounds

TL;DR: The Gaussian-2 theoretical procedure (G2 theory) as discussed by the authors was proposed to calculate molecular energies (atomization energies, ionization potentials, and electron affinities) of compounds containing first and second-row atoms.
Journal ArticleDOI

Mechanism and modeling of nitrogen chemistry in combustion

TL;DR: In this article, the mechanisms and rate parameters for the gas-phase reactions of nitrogen compounds that are applicable to combustion-generated air pollution are discussed and illustrated by comparison of results from detailed kinetics calculations with experimental data.
Related Papers (5)