scispace - formally typeset
Journal ArticleDOI

The surface science of nanocrystals.

TLDR
The role of surface ligands in tuning and rationally designing properties of functional nanomaterials and their importance for biomedical and optoelectronic applications is focused on and an assessment of application-targeted surface engineering is concluded.
Abstract
All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands - molecules that bind to the surface - are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.

read more

Citations
More filters
Journal ArticleDOI

Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

TL;DR: Lead-halide perovskites have entered the family of colloidal nanocrystals, showing excellent optical properties and easy synthesizability, and insight is provided into their chemical versatility, stability challenges and use in optoelectronics.
Journal ArticleDOI

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials

TL;DR: This review discusses efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions, and explores the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies.
Journal ArticleDOI

Building devices from colloidal quantum dots.

TL;DR: Recent progress in tailoring and combining quantum dots to build electronic and optoelectronic devices and new ligand chemistries and matrix materials have been reported that provide freedom to control the dynamics of excitons and charge carriers and to design device interfaces are reviewed.
Journal ArticleDOI

Advances in highly doped upconversion nanoparticles

TL;DR: A review of recent advances in developing highly doped UCNPs is surveyed, the strategies that bypass the concentration quenching effect are highlighted, and new optical properties as well as emerging applications enabled by these nanoparticles are discussed.
References
More filters
Book

Intermolecular and surface forces

TL;DR: The forces between atoms and molecules are discussed in detail in this article, including the van der Waals forces between surfaces, and the forces between particles and surfaces, as well as their interactions with other forces.
Journal ArticleDOI

Semiconductor Nanocrystals as Fluorescent Biological Labels

TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Journal ArticleDOI

Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites

TL;DR: In this paper, a simple route to the production of high-quality CdE (E=S, Se, Te) semiconductor nanocrystallites is presented, based on pyrolysis of organometallic reagents by injection into a hot coordinating solvent.
Journal ArticleDOI

Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection

TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Journal ArticleDOI

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Related Papers (5)