scispace - formally typeset
Journal ArticleDOI

Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants

Reads0
Chats0
TLDR
In this article, carbon multi-walled nanotubes (C-MWNTs) and alternatively carbon double-weled nanotsubes (DWNTs), were added in water, following their previous work, to enhance the thermal conductivity of this traditional heat transfer fluid.
Abstract
Carbon multi-walled nanotubes (C-MWNTs) and alternatively carbon double-walled nanotubes (C-DWNTs) were added in water, following our previous work, in order to enhance the thermal conductivity of this traditional heat transfer fluid. Hexadecyltrimethyl ammonium bromide (CTAB) and Nanosperse AQ were employed as dispersants. The transient hot-wire technique was used for the measurement of the thermal conductivity with an instrument built for this purpose. The absolute uncertainty is better than 2%. The maximum thermal conductivity enhancement obtained was 34% for a 0.6% volume C-MWNT suspension in water with CTAB. All measurements were made at ambient temperature. In an attempt to evaluate and explain the experimental results, information about the microstructure of the suspensions is needed. The findings of these investigations are presented here along with the analysis.

read more

Citations
More filters
Journal ArticleDOI

Heat transfer characteristics of nanofluids: a review

TL;DR: A review on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows is presented in this article, where the authors identify opportunities for future research.
Journal ArticleDOI

Heat Transfer in Nanofluids—A Review

TL;DR: In this paper, the authors present an exhaustive review of the literature in this area and suggest a direction for future developments, including heat transfer, material science, physics, chemical engineering and synthetic chemistry.
Journal ArticleDOI

Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements

TL;DR: In this article, the authors provide a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications.
Journal ArticleDOI

A review of nanofluid stability properties and characterization in stationary conditions

TL;DR: In this article, the stability of nanofluids is discussed as it has a major role in heat transfer enhancement for further possible applications, and general stabilization methods as well as various types of instruments for stability inspection.
Journal ArticleDOI

Enhanced thermal conductivity of nanofluids: a state-of-the-art review

TL;DR: In this article, effective thermal conductivity models of nanofluids are reviewed and comparisons between experimental findings and theoretical predictions are made, and the results show that there exist significant discrepancies among the experimental data available and between the experimental results and the theoretical model predictions.
References
More filters
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Book

Heat Transfer

J. P. Holman
Journal ArticleDOI

Room-temperature transistor based on a single carbon nanotube

TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Journal ArticleDOI

Unusually High Thermal Conductivity of Carbon Nanotubes

TL;DR: An unusually high value, lambda approximately 6600 W/m K, is suggested for an isolated (10,10) nanotube at room temperature, comparable to the thermal conductivity of a hypothetical isolated graphene monolayer or diamond.
Related Papers (5)