scispace - formally typeset
Journal ArticleDOI

Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties

TLDR
In this paper, a hierarchical reduced graphene oxide (RGO) foams decorated with in-situ grown ZnO nanowires (ZnO nws ) were realized by a direct freeze-drying and hydrothermal process.
About
This article is published in Carbon.The article was published on 2017-05-01. It has received 499 citations till now. The article focuses on the topics: Absorption (electromagnetic radiation) & Graphene.

read more

Citations
More filters
Journal ArticleDOI

Solvothermal Synthesis of Reduced Graphene Oxide/Ferroferric Oxide Hybrid Composites with Enhanced Microwave Absorption Properties

TL;DR: In this paper, a reduced graphene oxide/ferroferric oxide (RGO/Fe3O4) hybrid composite was successfully fabricated by a facile one-step solvothermal method.
Journal ArticleDOI

Experimental and simulation study of effect of thickness on performance of (butylene adipate-co-terephthalate) and poly lactide nanocomposites incorporated with graphene as stand-alone electromagnetic interference shielding and metal-backed microwave absorbers

TL;DR: In this paper, the dielectric properties induced by the presence of graphene nanoplatelets (GNP) in two polymeric matrices were measured experimentally and then used to predict their performances as both stand-alone shielding materials and metal-backed microwave absorbers.
Journal ArticleDOI

A Facile Synthesis of Novel Amorphous TiO2 Nanorods Decorated rGO Hybrid Composites with Wide Band Microwave Absorption.

TL;DR: It is considered that the well-matched impedance, various polarization processes, capacitor-like structure and conductive networks all contributed to the excellent microwave absorption of a-TiO2/rGO.
Journal ArticleDOI

Achieving enhanced dielectric property via growing Co-Ni-P nano-alloys on SiC nanowires with 3D conductive network

TL;DR: In this paper, the authors proposed a facile route to prepare 1D magnetic absorbers with higher absorption efficiency and their electromagnetic property and microwave absorption were also studied in detail, showing that the 3D conductive network has significant effects on improving the dielectric loss of absorbers.
References
More filters
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

The reduction of graphene oxide

TL;DR: In this paper, the state-of-the-art status of the reduction of GO on both techniques and mechanisms is reviewed, where the reduction process can partially restore the structure and properties of graphene.
Journal ArticleDOI

Broadband and Tunable High‐Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam

TL;DR: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated and it is shown that via physical compression, the microwave absorption performance can be tuned.
Journal ArticleDOI

CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption

TL;DR: Owing to the magnetic-dielectric synergistic effect, the obtained CoNi@SiO2 @TiO2 microspheres exhibit outstanding microwave absorption performance with a maximum reflection loss of -58.2 dB and wide bandwidth of 8.1 GHz.
Journal ArticleDOI

Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures.

TL;DR: Chemical graphitized r-GOs, as the thinnest and lightest material in the carbon family, exhibit high-efficiency electromagnetic interference shielding at elevated temperature, attributed to the cooperation of dipole polarization and hopping conductivity.
Related Papers (5)