scispace - formally typeset
Book ChapterDOI

Time-dependent density-functional theory

Reads0
Chats0
TLDR
In this paper, the linear-response limit of time-dependent density functional theory along with applications to the photo-response of atoms, molecules and metallic surfaces is described, and a simplified version of the time dependent Kohn and Sham (KS) scheme is implemented in this context.
Abstract
Publisher Summary Density functional theory for stationary states or ensembles is a formulation of many-body theory in terms of the particle density Time-dependent density functional theory as a complete formalism is of more recent origin, although a time-dependent version This chapter describes the linear-response limit of time-dependent density functional theory along with applications to the photo-response of atoms, molecules and metallic surfaces Beyond the regime of linear response, the description of atomic and nuclear collision processes appears to be a promising field of application where the time-dependent Kohn and Sham (KS) scheme could serve as an economical alternative to time-dependent configuration-interaction calculation So far, only a simplified version of the time-dependent KS scheme has been implemented in this context Another possible application beyond the regime of linear response is the calculation of atomic multiphoton ionization which, in the case of hydrogen, has recently been found 54i55 to exhibit chaotic behavior A full-scale numerical solution of the time-dependent Schriidinger equation for a hydrogen atom placed in strong time-dependent electric fields has recently been reported A time-dependent Hartree–Fock calculation has been achieved for the multiphoton ionization of helium For heavier atoms an analogous solution of the time dependent Kohn-Sham equations offers itself as a promising application of time-dependent density functional theory

read more

Citations
More filters
Journal ArticleDOI

Toward reliable density functional methods without adjustable parameters: The PBE0 model

TL;DR: In this paper, an analysis of the performances of a parameter free density functional model (PBE0) obtained combining the so-called PBE generalized gradient functional with a predefined amount of exact exchange is presented.
Journal ArticleDOI

Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory

TL;DR: In this paper, the three-parameter Lee-Yang-Parr (B3LYP) functional was used to compute low-lying electronic excitations of N2, ethylene, formaldehyde, pyridine and porphin.
Journal ArticleDOI

An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules

TL;DR: In this paper, time-dependent density-functional (TDDFT) methods are applied within the adiabatic approximation to a series of molecules including C70, and they provide an efficient approach for treating frequency-dependent response properties and electronic excitation spectra of large molecules.
Journal ArticleDOI

Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold

TL;DR: In this paper, the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules is evaluated.
References
More filters
Journal ArticleDOI

Self-Consistent Equations Including Exchange and Correlation Effects

TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Journal ArticleDOI

Inhomogeneous Electron Gas

TL;DR: In this article, the ground state of an interacting electron gas in an external potential was investigated and it was proved that there exists a universal functional of the density, called F[n(mathrm{r})], independent of the potential of the electron gas.
Journal ArticleDOI

Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis

TL;DR: The authors assess various approximate forms for the correlation energy per particle of the spin-polarized homogeneous electron gas that have frequently been used in applications of the local spin density a...
Journal ArticleDOI

Density-Functional Theory for Time-Dependent Systems

TL;DR: In this article, a time-dependent version of density functional theory was proposed to deal with the non-perturbative quantum mechanical description of interacting many-body systems moving in a very strong timedependent external field.
Journal ArticleDOI

A Simplification of the Hartree-Fock Method

TL;DR: In this article, the Hartree-Fock equations can be regarded as ordinary Schrodinger equations for the motion of electrons, each electron moving in a slightly different potential field, which is computed by electrostatics from all the charges of the system, positive and negative, corrected by the removal of an exchange charge, equal in magnitude to one electron, surrounding the electron whose motion is being investigated.
Related Papers (5)