scispace - formally typeset
Open AccessJournal ArticleDOI

Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.

TLDR
Data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes and the homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans.
Abstract
Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of approximately 55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS-induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cellular mechanisms for heavy metal detoxification and tolerance

TL;DR: A broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance is provided.
Journal ArticleDOI

PHYTOCHELATINS AND METALLOTHIONEINS: Roles in Heavy Metal Detoxification and Homeostasis

TL;DR: Recent advances in understanding the regulation of PC biosynthesis and MT gene expression and the possible roles of PCs and MTs in heavy metal detoxification and homeostasis are reviewed.
Journal ArticleDOI

Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants

TL;DR: This review discusses the molecular mechanisms of toxic metal accumulation in plants and algae, the responses to metal exposure, as well as the understanding of metal tolerance and its evolution.
Journal ArticleDOI

Phytochelatins and their roles in heavy metal detoxification

TL;DR: Plants respond to heavy metal toxicity in a variety of different ways, including immobilization, exclusion, chelation and compartmentalization of the metal ions, and the expression of more general stress response mechanisms such as ethylene and stress proteins.
Journal ArticleDOI

Molecular mechanisms of plant metal tolerance and homeostasis.

TL;DR: Recent progress in the molecular understanding of plant metal homeostasis and tolerance is reviewed and a number of uptake transporters have been cloned as well as candidates for the vacuolar sequestration of metals are identified.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice

TL;DR: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved and modifications are incorporated into a new program, CLUSTAL W, which is freely available.
Journal ArticleDOI

Oxidative mechanisms in the toxicity of metal ions

TL;DR: Some mechanisms associated with the toxicities of metal ions are very similar to the effects produced by many organic xenobiotics, related to differences in solubilities, absorbability, transport, chemical reactions, and the complexes that are formed within the body.
Book ChapterDOI

Molecular genetic analysis of fission yeast Schizosaccharomyces pombe.

TL;DR: This chapter describes techniques concerned with classical and molecular genetics, cell biology, and biochemistry that can be used with Schizosaccharomyces pombe.
Related Papers (5)