scispace - formally typeset
Open Access

Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion Battery Design

TLDR
Prelithiation of this anode using stabilized lithium metal powder (SLMP) improves the first cycle Coulombic efficiency of a SiO/NMC full cell from ∼48% to ∼90% and enables good capacity retention of more than 80% after 100 cycles at C/3 in a lithium-ion full cell.
Abstract
Silicon alloys have the highest specific capacity when used as anode material for lithium-ion batteries; however, the drastic volume change inherent in their use causes formidable challenges toward achieving stable cycling performance. Large quantities of binders and conductive additives are typically necessary to maintain good cell performance. In this report, only 2% (by weight) functional conductive polymer binder without any conductive additives was successfully used with a micron-size silicon monoxide (SiO) anode material, demonstrating stable and high gravimetric capacity (>1000 mAh/g) for ∼500 cycles and more than 90% capacity retention. Prelithiation of this anode using stabilized lithium metal powder (SLMP) improves the first cycle Coulombic efficiency of a SiO/NMC full cell from ∼48% to ∼90%. The combination enables good capacity retention of more than 80% after 100 cycles at C/3 in a lithium-ion full cell.

read more

Citations
More filters
Journal ArticleDOI

Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery

TL;DR: In this paper, the authors focus on the challenges and recent progress in the development of Si anodes for lithium-ion battery, including initial Coulombic efficiency, areal capacity, and material cost, which call for more research effort and provide a bright prospect for the widespread applications of silicon anodes in the future lithium ion batteries.
Journal ArticleDOI

Silicon oxides: a promising family of anode materials for lithium-ion batteries

TL;DR: This Review focuses on the recent advances in the synthesis and lithium storage properties of silicon oxide-based anode materials and presents the progress in a systematic manner.
Journal ArticleDOI

Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices

TL;DR: This review reviews existing and emerging binders, binding technology used in energy-storage devices, and state-of-the-art mechanical characterization and computational methods for binder research, and proposes prospective next-generation binders for energy- storage devices from the molecular level to the macro level.
Journal ArticleDOI

The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites

TL;DR: In this article, the authors provide an overview on the relevant fundamental aspects for the de-/lithiation mechanism, the already overcome and remaining challenges (including, for instance, the potential fast charging and the recycling), as well as recent progress in the field such as the tradeoff between relatively cheaper natural graphite and comparably purer synthetic graphite, and the introduction of relevant amounts of silicon (oxide) to boost the energy and power density.
Journal ArticleDOI

A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.

TL;DR: Silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives are replaced with a single conductive binder, in this case, the conducting polymer PEDOT PSS are described.
References
More filters
Journal ArticleDOI

Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.

TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Journal ArticleDOI

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

TL;DR: The design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation, resulting in superior cyclability and Coulombic efficiency.
Journal ArticleDOI

Designing nanostructured Si anodes for high energy lithium ion batteries

TL;DR: In this article, the authors outline three fundamental materials challenges associated with large volume change, and then show how nanostructured materials design can successfully address these challenges, which can also be extended to other battery materials that undergo large volume changes.
Journal ArticleDOI

A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries

TL;DR: It is shown that mixing Si nanopowder with alginate, a natural polysaccharide extracted from brown algae, yields a stable battery anode possessing reversible capacity eight times higher than that of the state-of-the-art graphitic anodes.
Journal ArticleDOI

Silicon-based Nanomaterials for Lithium-Ion Batteries - A Review

TL;DR: In this article, the most recent advance in the applications of 0D (nanoparticles), 1D(nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in lithium-ion batteries are summarized.
Related Papers (4)