scispace - formally typeset
Journal ArticleDOI

Trichoderma–plant–pathogen interactions

TLDR
A better understanding of molecular factors involved in this complex tripartite interaction is expected to enhance not only the rapid identification of effective strains and their applications but also indicate the potentials for improvement of natural strains of Trichoderma.
Abstract
Biological control involves the use of beneficial organisms, their genes, and/or products, such as metabolites, that reduce the negative effects of plant pathogens and promote positive responses by the plant. Disease suppression, as mediated by biocontrol agents, is the consequence of the interactions between the plant, pathogens, and the microbial community. Antagonists belonging to the genus Trichoderma are among the most commonly isolated soil fungi. Due to their ability to protect plants and contain pathogen populations under different soil conditions, these fungi have been widely studied and commercially marketed as biopesticides, biofertilizers and soil amendments. Trichoderma spp. also produce numerous biologically active compounds, including cell wall degrading enzymes, and secondary metabolites. Studies of the three-way relationship established with Trichoderma, the plant and the pathogen are aimed at unravelling the mechanisms involved in partner recognition and the cross-talk used to maintain the beneficial association between the fungal antagonist and the plant. Several strategies have been used to identify the molecular factors involved in this complex tripartite interaction including genomics, proteomics and, more recently, metabolomics, in order to enhance our understanding. This review presents recent advances and findings regarding the biocontrol-resulting events that take place during the Trichoderma –plant–pathogen interaction. We focus our attention on the biological aspects of this topic, highlighting the novel findings concerning the role of Trichoderma in disease suppression. A better understanding of these factors is expected to enhance not only the rapid identification of effective strains and their applications but also indicate the potentials for improvement of natural strains of Trichoderma .

read more

Citations
More filters
Journal ArticleDOI

Induced Systemic Resistance and Plant Responses to Fungal Biocontrol Agents

TL;DR: Biocontrol fungi are agents that control plant diseases and have the ability to ameliorate a wide range of abiotic stresses, and some of them can also alleviate physiological stresses such as seed aging.
Journal ArticleDOI

Biology and biotechnology of Trichoderma

TL;DR: This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.
Journal ArticleDOI

The development, regulation and use of biopesticides for integrated pest management.

TL;DR: The new biopesticide products that will result from this research will bring with them new regulatory and economic challenges that must be addressed through joint working between social and natural scientists, policy makers and industry.
Journal ArticleDOI

Translational Research on Trichoderma: From 'Omics to the Field

TL;DR: An overview of the latest discoveries on the Trichoderma expressome and metabolome is presented, of the complex and diverse biotic interactions established in nature by these microbes, and of their proven or potential importance to agriculture and industry.
References
More filters
Journal ArticleDOI

Systemic resistance induced by rhizosphere bacteria

TL;DR: Rhizobacteria-mediated induced systemic resistance (ISR) is effective under field conditions and offers a natural mechanism for biological control of plant disease.
Journal ArticleDOI

Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts.

TL;DR: Past research indicates that the mechanisms are many and varied, even within the genus Trichoderma, and in order to make the most effective use of biocontrol agents for the control of plant diseases, it must understand how the agents work and what their limitations are.
Journal ArticleDOI

Biocontrol mechanisms of Trichoderma strains

TL;DR: The genus Trichoderma comprises a great number of fungal strains that act as biological control agents, the antagonistic properties of which are based on the activation of multiple mechanisms, such as plant growth factors, hydrolytic enzymes, siderophores, antibiotics, and carbon and nitrogen permeases.
Related Papers (5)