scispace - formally typeset
Journal ArticleDOI

Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms†

TLDR
In this paper, a unified approach to pore size characterization of microporous carbonaceous materials such as activated carbon and carbon fibers by nitrogen, argon, and carbon dioxide adsorption at standard temperatures, 77 K for N2 and Ar and 273 K for CO2, was presented.
Abstract
We present a unified approach to pore size characterization of microporous carbonaceous materials such as activated carbon and carbon fibers by nitrogen, argon, and carbon dioxide adsorption at standard temperatures, 77 K for N2 and Ar and 273 K for CO2. Reference isotherms of N2, Ar, and CO2 in a series of model slit-shaped carbon pores in the range from 0.3 to 36 nm have been calculated from the nonlocal density functional theory (NLDFT) using validated parameters of intermolecular interactions. Carbon dioxide isotherms have also been generated by the grand canonical Monte Carlo (GCMC) method based on the 3-center model of Harris and Yung. The validation of model parameters includes three steps:  (1) prediction of vapor−liquid equilibrium data in the bulk system, (2) prediction of adsorption isotherm on graphite surface, (3) comparison of the NLDFT adsorption isotherms in pores to those of GCMC simulations, performed with the parameters of fluid-fluid interactions, which accurately reproduce vapor−liqui...

read more

Citations
More filters
Journal ArticleDOI

The assessment of surface areas in porous carbons by two model-independent techniques, the DR equation and DFT

TL;DR: In this paper, it was shown that two model independent techniques (Kaneko's comparison plot for nitrogen and the enthalpies of immersion into aqueous solutions of phenol) and two model-dependent approaches (Dubinin's theory and DFT) lead to total surface areas which are in good agreement.
Journal ArticleDOI

Characterization of micro-mesoporous carbon media

TL;DR: In this article, a simple method to characterize the micro and mesoporous carbon media is discussed, in which the overall adsorption quantity is the sum of capacities of all pores (slit shape is assumed), in each of which the process of adaption occurs in two sequential steps: the multi-layering followed by pore filling steps.
Journal ArticleDOI

Capacitance and surface of carbons in supercapacitors

TL;DR: In this paper, the missing link between the specific surface area of carbons surface and their electrochemical capacitance was identified and the characterization protocols used for the characterization of the porosity of the carbons applied in supercapacitors electrodes were adapted for this specific application.
Journal ArticleDOI

Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density

TL;DR: Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g−1 in ionic liquid electrolyte.
References
More filters
Journal ArticleDOI

Equation of State for Nonattracting Rigid Spheres

TL;DR: In this paper, a new equation of state for rigid spheres has been developed from an analysis of the reduced virial series, which possesses superior ability to describe rigid-sphere behavior compared with existing equations.
Journal ArticleDOI

Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids

TL;DR: In this paper, the Fourier transform of the pair correlation function is used to calculate the structure factor of a reference system in which the intermolecular forces are entirely repulsive and identical to the repulsive forces in a Lennard-Jones fluid.
Journal ArticleDOI

Analysis of discrete ill-posed problems by means of the L-curve

Per Christian Hansen
- 01 Dec 1992 - 
TL;DR: The main purpose of this paper is to advocate the use of the graph associated with Tikhonov regularization in the numerical treatment of discrete ill-posed problems, and to demonstrate several important relations between regularized solutions and the graph.
Journal ArticleDOI

Method for the calculation of effective pore size distribution in molecular sieve carbon

TL;DR: In this paper, a method for the calculation of effective pore size distribution from adsorption isotherms in molecular-sieve carbon is described, which is more exact theoretically as well as practically than previously described methods.
Related Papers (5)