scispace - formally typeset
Open AccessJournal ArticleDOI

Using AUC and accuracy in evaluating learning algorithms

TLDR
It is shown theoretically and empirically that AUC is a better measure (defined precisely) than accuracy and reevaluate well-established claims in machine learning based on accuracy using AUC and obtain interesting and surprising new results.
Abstract
The area under the ROC (receiver operating characteristics) curve, or simply AUC, has been traditionally used in medical diagnosis since the 1970s. It has recently been proposed as an alternative single-number measure for evaluating the predictive ability of learning algorithms. However, no formal arguments were given as to why AUC should be preferred over accuracy. We establish formal criteria for comparing two different measures for learning algorithms and we show theoretically and empirically that AUC is a better measure (defined precisely) than accuracy. We then reevaluate well-established claims in machine learning based on accuracy using AUC and obtain interesting and surprising new results. For example, it has been well-established and accepted that Naive Bayes and decision trees are very similar in predictive accuracy. We show, however, that Naive Bayes is significantly better than decision trees in AUC. The conclusions drawn in this paper may make a significant impact on machine learning and data mining applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation

TL;DR: This article shows how MCC produces a more informative and truthful score in evaluating binary classifications than accuracy and F1 score, by first explaining the mathematical properties, and then the asset of MCC in six synthetic use cases and in a real genomics scenario.
Journal ArticleDOI

A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches

TL;DR: A taxonomy for ensemble-based methods to address the class imbalance where each proposal can be categorized depending on the inner ensemble methodology in which it is based is proposed and a thorough empirical comparison is developed by the consideration of the most significant published approaches to show whether any of them makes a difference.
Journal ArticleDOI

An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics

TL;DR: This work carries out a thorough discussion on the main issues related to using data intrinsic characteristics in this classification problem, and introduces several approaches and recommendations to address these problems in conjunction with imbalanced data.
Journal ArticleDOI

Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

TL;DR: In this paper, a comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field is provided, and the challenges and suggested solutions to help researchers understand the existing research gaps.
Journal ArticleDOI

An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes

TL;DR: This work develops a double study, using different base classifiers in order to observe the suitability and potential of each combination within each classifier, and compares the performance of these ensemble techniques with the classifiers' themselves.
References
More filters
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

Statistical learning theory

TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Book

C4.5: Programs for Machine Learning

TL;DR: A complete guide to the C4.5 system as implemented in C for the UNIX environment, which starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting.
Journal ArticleDOI

The meaning and use of the area under a receiver operating characteristic (ROC) curve.

James A. Hanley, +1 more
- 01 Apr 1982 - 
TL;DR: A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented and it is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a random chosen non-diseased subject.