scispace - formally typeset
Journal ArticleDOI

When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia.

TLDR
Through rigorous analysis and numerics, it is demonstrated that the intercluster phase shifts can stably coexist and exhibit different forms of chaotic behavior, including oscillatory, rotatory, and mixed-mode oscillations.
Abstract
Modeling cooperative dynamics using networks of phase oscillators is common practice for a wide spectrum of biological and technological networks, ranging from neuronal populations to power grids. In this paper we study the emergence of stable clusters of synchrony with complex intercluster dynamics in a three-population network of identical Kuramoto oscillators with inertia. The populations have different sizes and can split into clusters where the oscillators synchronize within a cluster, but notably, there is a phase shift between the dynamics of the clusters. We extend our previous results on the bistability of synchronized clusters in a two-population network [I. V. Belykh et al., Chaos 26, 094822 (2016)CHAOEH1054-150010.1063/1.4961435] and demonstrate that the addition of a third population can induce chaotic intercluster dynamics. This effect can be captured by the old adage "two is company, three is a crowd," which suggests that the delicate dynamics of a romantic relationship may be destabilized by the addition of a third party, leading to chaos. Through rigorous analysis and numerics, we demonstrate that the intercluster phase shifts can stably coexist and exhibit different forms of chaotic behavior, including oscillatory, rotatory, and mixed-mode oscillations. We also discuss the implications of our stability results for predicting the emergence of chimeras and solitary states.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The computational brain: Patricia S. Churchland and Terrence J. Sejnowski (MIT Press, Cambridge, MA, 1992); xi, 544 pages, $39.95

TL;DR: The Computational Brain this paper provides a broad overview of neuroscience and computational theory, followed by a study of some of the most recent and sophisticated modeling work in the context of relevant neurobiological research.

A First Order Phase Transition Resulting from Finite Inertia in Coupled Oscillator Systems

TL;DR: In this article, the collective behavior of a set of coupled damped driven pendula with finite inertia was analyzed, and it was shown that the synchronization of the oscillators exhibits a first order phase transition synchronization onset, substantially different from the second order transition obtained in the case of no inertia.
Journal ArticleDOI

Partial synchronization in the second-order Kuramoto model: An auxiliary system method

TL;DR: In this article, the authors developed an auxiliary system method that is based on the analysis of a two-dimensional piecewise-smooth system whose trajectories govern oscillating dynamics of phase differences between oscillators in the coherent cluster.
Journal ArticleDOI

Computational Models based on Synchronized Oscillators for Solving Combinatorial Optimization Problems

TL;DR: This work forms computing models based on synchronized oscillator dynamics for a broad spectrum of combinatorial optimization problems ranging from the Max-K-Cut (the general version of the Maximum Cut problem) to the Traveling Salesman Problem.
References
More filters
Book ChapterDOI

I and J

Journal ArticleDOI

Complex networks: Structure and dynamics

TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
Journal ArticleDOI

Exploring complex networks

TL;DR: This work aims to understand how an enormous network of interacting dynamical systems — be they neurons, power stations or lasers — will behave collectively, given their individual dynamics and coupling architecture.
Book

Synchronization: A Universal Concept in Nonlinear Sciences

TL;DR: This work discusseschronization of complex dynamics by external forces, which involves synchronization of self-sustained oscillators and their phase, and its applications in oscillatory media and complex systems.
Journal ArticleDOI

The Kuramoto model: A simple paradigm for synchronization phenomena

TL;DR: In this paper, a review of the Kuramoto model of coupled phase oscillators is presented, with a rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years.
Related Papers (5)