scispace - formally typeset
Open AccessProceedings ArticleDOI

You Only Look Once: Unified, Real-Time Object Detection

TLDR
Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract
We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
Proceedings ArticleDOI

Channel Pruning for Accelerating Very Deep Neural Networks

TL;DR: In this paper, a LASSO regression based channel selection and least square reconstruction is proposed to accelerate very deep convolutional neural networks, which achieves 5× speedup along with only 0.3% increase of error.
Book ChapterDOI

End-to-End Object Detection with Transformers

TL;DR: DetR as mentioned in this paper proposes a set-based global loss that forces unique predictions via bipartite matching, and a transformer encoder-decoder architecture to directly output the final set of predictions in parallel.
Posted Content

Objects as Points

TL;DR: The center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors and performs competitively with sophisticated multi-stage methods and runs in real-time.
Journal ArticleDOI

Deep Learning for Generic Object Detection: A Survey

TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
References
More filters
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings ArticleDOI

Histograms of oriented gradients for human detection

TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Journal ArticleDOI

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Posted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Related Papers (5)
Trending Questions (2)
What are the advantages and disadvantages of YOLOv8 vs Media Pipe for object detection?

The provided paper does not mention YOLOv8 or Media Pipe, so it does not provide information about the advantages and disadvantages of YOLOv8 vs Media Pipe for object detection.

What objects can Yolo detect?

Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background.