scispace - formally typeset
Search or ask a question

Showing papers on "SOX2 published in 2023"



Journal ArticleDOI
TL;DR: This paper analyzed the endogenous Sox2 locus using Big-IN to scarlessly integrate large DNA payloads incorporating deletions, rearrangements, and inversions affecting single or multiple hypersensitive sites (DHSs), as well as surgical alterations to transcription factor (TF) recognition sequences.

6 citations


Journal ArticleDOI
TL;DR: In this article , the expression of eight genes from the IAP family and the gene regulating IAP (XAF1) in mesenchymal stem cells derived from human milk was evaluated using the qPCR method.
Abstract: Due to their therapeutic potential, mesenchymal stem cells are the subject of intensive research on the use of their potential in the treatment of, among others, neurodegenerative diseases or immunological diseases. They are among the newest in the field of medicine. The presented study aimed to evaluate the expression of eight genes from the IAP family and the gene regulating IAP—XAF1—in stem cells derived from human milk, using the qPCR method. The relationships between the expression of genes under study and clinical data, such as maternal age, maternal BMI, week of pregnancy in which the delivery took place, bodyweight of the newborn, the number of pregnancies and deliveries, and the time elapsed since delivery, were also analyzed. The research was carried out on samples of human milk collected from 42 patients hospitalized in The Clinic of Obstetrics and Perinatology of the Independent Public Clinical Hospital No. 4, in Lublin. The conducted research confirmed the expression of the following genes in the tested material: NAIP, BIRC2, BIRC3, BIRC5, BIRC6, BIRC8, XIAP, XAF1, OCT4 and SOX2. Moreover, several dependencies of the expression of individual genes on the maternal BMI (BIRC5, XAF1 and NAIP), the time since childbirth (BIRC5, BIRC6, XAF1 and NAIP), the number of pregnancies and deliveries (BIRC2, BIRC5, BIRC6 and XAF1), the manner of delivery (XAF1 and OCT4), preterm labor (BIRC6 and NAIP) were demonstrated. Additionally, we found positive relationships between gene expression of BIRC7, BIRC8 and XAF1 and the main factors of pluripotency: SOX2 and OCT4. This work is the first to investigate the expression of genes from the IAPs family in mother’s milk stem cells.

4 citations


Journal ArticleDOI
TL;DR: In this paper , the expression of stemness-related (SOX2, NANOG and OCT3/4), extracellular matrix (COL1A1) and inflammatory genes (IL1β, IL6 and iNOS) was evaluated using qPCR.
Abstract: Introduction: Adipose tissue is widely exploited in regenerative medicine thanks to its trophic properties, mainly based on the presence of adipose-derived stromal cells. Numerous devices have been developed to promote its clinical use, leading to the introduction of one-step surgical procedures to obtain minimally manipulated adipose tissue derivatives. However, only a few studies compared their biological properties. This study aimed to characterize micro-fragmented (MAT) and nanofat adipose tissue (NAT) obtained with two different techniques. Methods: MAT, NAT and unprocessed lipoaspirate were collected from surgical specimens. RNA extraction and collagenase isolation of stromal vascular fraction (SVF) were performed. Tissue sections were analysed by histological and immunohistochemical (collagen type I, CD31, CD34 and PCNA) staining to assess tissue morphology and cell content. qPCR was performed to evaluate the expression of stemness-related (SOX2, NANOG and OCT3/4), extracellular matrix (COL1A1) and inflammatory genes (IL1β, IL6 and iNOS). Furthermore, multilineage differentiation was assessed following culture in adipogenic and osteogenic media and staining with Oil Red O and Alizarin red. ASC immunophenotype was assessed by flow cytometric analysis of CD90, CD105, CD73 and CD45. Results: Histological and immunohistochemical results showed an increased amount of stroma and a reduction of adipocytes in MAT and NAT, with the latter displaying the highest content of collagen type I, CD31, CD34 and PCNA. From LA to MAT and NAT, an increasing expression of NANOG, SOX2, OCT3/4, COL1A1 and IL6 was noted, while no significant differences in terms of IL1β and iNOS emerged. No statistically significant differences were noted between NAT and SVF in terms of stemness-related genes, while the latter demonstrated a significantly higher expression of stress-related markers. SVF cells derived from all three samples (LA, MAT, and NAT) showed a similar ASC immunoprofile as well as osteogenic and adipogenic differentiation. Discussion: Our results showed that both MAT and NAT techniques allowed the rapid isolation of ASC-rich grafts with a high anabolic and proliferative potential. However, NAT showed the highest levels of extracellular matrix content, replicating cells, and stemness gene expression. These results may provide precious clues for the use of adipose tissue derivatives in the clinical setting.

4 citations


Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors investigated the expression level, functions, and mechanisms of LINC00941 in esophageal squamous cell carcinoma (ESCC) tumorigenesis.
Abstract: Abstract LINC00941 is a novel long noncoding RNA (lncRNA) and emerging as an important factor in cancer development. However, the exact function and relative regulatory mechanism of LINC00941 in carcinogenesis of esophageal squamous cell carcinoma (ESCC) remain to be further clarified. The present study was to investigate the expression level, functions, and mechanisms of LINC00941 in ESCC tumorigenesis. LINC00941 was significantly upregulated in ESCC, and upregulated LINC00941 was correlated with dismal patient outcomes. LINC00941 functioned as an oncogene by promoting cells proliferation, stemness, migration, and invasion in ESCC. In terms of mechanisms, SOX2 could bind directly to the promoter region of LINC00941 and activate its transcription. In turn, LINC00941 upregulated SOX2 through interacting with interleukin enhancer binding factor 2 (ILF2) and Y-box binding protein 1 (YBX1) at the transcriptional and post-transcriptional levels. LINC00941 recruited ILF2 and YBX1 to the promoter region of SOX2 , leading to upregulation of the transcription of SOX2 . Moreover, LINC00941 could promote the binding ability of ILF2 and YBX1 on mRNA of SOX2 and further stabilize SOX2 mRNA. Therefore, LINC00941 contributed to the malignant behaviors of ESCC cells via the unrestricted increase in SOX2 expression. In conclusion, our data indicate that LINC00941 exacerbates ESCC progression through forming a LINC00941-ILF2/YBX1-SOX2 positive feedback loop, and LINC00941 may be a promising prognostic and therapeutic target for ESCC.

3 citations


Journal ArticleDOI
TL;DR: In this paper , the authors developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population.
Abstract: Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.

3 citations


Journal ArticleDOI
TL;DR: In this article , the effect of hypoxia on the differentiation potential of human neural stem cells (FNSCs) isolated from the subventricular zone of aborted fetal brains was evaluated.
Abstract: Fetal neural stem cells (FNSCs) present in the human fetal brain differentiate into cells of neuronal and glial lineages. The developing fetus is exposed to lower oxygen concentrations than adults, and this physiological hypoxia may influence the growth and differentiation of the FNSCs. This study aimed to evaluate the effect of hypoxia on the differentiation potential of human FNSCs isolated from the subventricular zone of aborted fetal brains (n = 5). FNSCs were isolated, expanded, and characterized by Nestin and Sox2 expression using immunocytochemistry and flow cytometry, respectively. These FNSCs were exposed to 20% oxygen (normoxia) and 0.2% oxygen (hypoxia) concentrations for 48 h, and hypoxia exposure (n = 5) was validated. Whole transcriptome analyses (Genespring GX13) of FNSCs exposed to hypoxia (Agilent 4 × 44 K human array slides) highlighted that genes associated with neurogenesis were enriched upon exposure to hypoxia. The pathway analysis of these enriched genes (using Metacore) showed the involvement of the WNT signaling pathway. Microarray analyses were validated using neuronal and glial lineage commitment markers, namely, NEUROG1, NEUROG2, ASCL1, DCX, GFAP, OLIG2, and NKX2.2, using qPCR (n = 9). DCX, ASCL1, NGN1, and GFAP protein expression was analyzed by Western blotting (n = 3). This demonstrated upregulation of the neuronal commitment markers upon hypoxia exposure, while no change was observed in astrocytic and oligodendrocyte lineage commitment markers. Increased expression of downstream targets of the WNT signaling pathway, TCF4 and ID2, by qPCR (n = 9) and increased protein expression of CTNNB1 (β-catenin) and ID2 by Western blot (n = 3) indicated its involvement in mediating neuronal differentiation upon exposure to hypoxia.

3 citations


Journal ArticleDOI
TL;DR: In this paper , the phase separation of a pluripotency transcription factor linked mechanical cues in the niche to the fate of cancer stem cells (CSCs) and showed that increased matrix stiffness is associated with poor responses to neoadjuvant chemotherapy, worse prognosis, and CSC enrichment in patients with breast cancer.
Abstract: Abstract Emerging evidence shows that the biomechanical environment is required to support cancer stem cells (CSCs), which play a crucial role in drug resistance. However, how mechanotransduction signals regulate CSCs and its clinical significance has remained unclear. Using clinical-practice ultrasound elastography for patients’ lesions and atomic force microscopy for surgical samples, we reveal that increased matrix stiffness is associated with poor responses to neoadjuvant chemotherapy, worse prognosis, and CSC enrichment in patients with breast cancer. Mechanically, TAZ activated by biomechanics enhances CSC properties via phase separation with NANOG. TAZ-NANOG phase separation, which is dependent on acidic residues in the N-terminal activation domain of NANOG, promotes the transcription of SOX2 and OCT4. Therapeutically, targeting NANOG or TAZ reduces CSCs and enhances the chemosensitivity in vivo. Collectively, this study demonstrated that the phase separation of a pluripotency transcription factor links mechanical cues in the niche to the fate of CSCs.

3 citations


Journal ArticleDOI
TL;DR: In the long-lived naked mole rat (NMR), the entire process of oogenesis occurs postnatally as mentioned in this paper , and the primordial germ cell (PGC) marker BLIMP1 persists up to P90 alongside the germ cells in all stages of female differentiation.
Abstract: In the long-lived naked mole-rat (NMR), the entire process of oogenesis occurs postnatally. Germ cell numbers increase significantly in NMRs between postnatal days 5 (P5) and P8, and germs cells positive for proliferation markers (Ki-67, pHH3) are present at least until P90. Using pluripotency markers (SOX2 and OCT4) and the primordial germ cell (PGC) marker BLIMP1, we show that PGCs persist up to P90 alongside germ cells in all stages of female differentiation and undergo mitosis both in vivo and in vitro. We identified VASA+ SOX2+ cells at 6 months and at 3-years in subordinate and reproductively activated females. Reproductive activation was associated with proliferation of VASA+ SOX2+ cells. Collectively, our results suggest that highly desynchronized germ cell development and the maintenance of a small population of PGCs that can expand upon reproductive activation are unique strategies that could help to maintain the NMR's ovarian reserve for its 30-year reproductive lifespan.

2 citations


Journal ArticleDOI
27 Feb 2023-Cells
TL;DR: In this article , three-dimensional (3D) spheroids were produced from several malignant melanomas (MM), and their 3D architectures and cellular metabolisms were evaluated by phase-contrast microscopy and Seahorse bio-analyzer, respectively.
Abstract: To study the molecular mechanisms responsible for inducing the spatial proliferation of malignant melanomas (MM), three-dimension (3D) spheroids were produced from several MM cell lines including SK-mel-24, MM418, A375, WM266-4, and SM2-1, and their 3D architectures and cellular metabolisms were evaluated by phase-contrast microscopy and Seahorse bio-analyzer, respectively. Several transformed horizontal configurations were observed within most of these 3D spheroids, and the degree of their deformity was increased in the order: WM266-4, SM2-1, A375, MM418, and SK-mel-24. An increased maximal respiration and a decreased glycolytic capacity were observed within the lesser deformed two MM cell lines, WM266-4 and SM2-1, as compared with the most deformed ones. Among these MM cell lines, two distinct cell lines, WM266-4 and SK-mel-24, whose 3D appearances were the closest and farthest, respectively, from being horizontally circular-shaped, were subjected to RNA sequence analyses. Bioinformatic analyses of the differentially expressed genes (DEGs) identified KRAS and SOX2 as potential master regulatory genes for inducing these diverse 3D configurations between WM266-4 and SK-mel-24. The knockdown of both factors altered the morphological and functional characteristics of the SK-mel-24 cells, and in fact, their horizontal deformity was significantly reduced. A qPCR analysis indicated that the levels of several oncogenic signaling related factors, including KRAS and SOX2, PCG1α, extracellular matrixes (ECMs), and ZO1 had fluctuated among the five MM cell lines. In addition, and quite interestingly, the dabrafenib and trametinib resistant A375 (A375DT) cells formed globe shaped 3D spheroids and showed different profiles in cellular metabolism while the mRNA expression of these molecules that were tested as above were different compared with A375 cells. These current findings suggest that 3D spheroid configuration has the potential for serving as an indicator of the pathophysiological activities associated with MM.

2 citations


Journal ArticleDOI
Abstract: Background: Vitamin C is one of the major extracellular nonenzymatic antioxidants involved in the biosynthesis of collagen. It promotes the growth of fibroblasts, wound healing processes, and enhances the survival and differentiation of osteoblasts. The potential effects of ascorbic acid on human dental pulp cells (DPC) and the cells of the apical papilla (CAP) used in actual regenerative endodontic procedures remain largely unknown. In this study, we investigated the possible employment of ascorbic acid in the differentiation and regenerative therapies of DPC and CAP. Methods: Nine extracted human wisdom teeth were selected for this study. Subpopulations of stem cells within DPC and CAP were sorted with the mesenchymal stem cell marker STRO-1, followed by treatments with different concentrations (0 mM, 0.1 mM, 0.5 mM, and 1.0 mM) of ascorbic acid (AA), RT-PCR, and Western blot analysis. Results: FACS analysis revealed the presence of cell subpopulations characterized by a strong expression of mesenchymal stem cell marker STRO-1 and dental stem cell markers CD105, CD44, CD146, CD90, and CD29. Treatment of the cells with defined amounts of AA revealed a markedly increased expression of proliferation marker Ki-67, especially in the concentration range between 0.1 mM and 0.5 mM. Further investigations demonstrated that treatment with AA led to significantly increased expression of common stem cell markers OCT4, Nanog, and Sox2. The most potent proliferative and expressional effects of AA were observed in the concentration of 0.1 mM. Conclusions: AA might be a novel and potent growth promoter of human dental cells. Increasing the properties of human dental pulp cells and the cells of the apical papilla using AA could be a useful factor for further clinical developments of regenerative endodontic procedures.

Journal ArticleDOI
TL;DR: In this article , microRNA expression profiles were used for detecting differentially expressed microRNA in resistant clones and the parental cells, and miR-197-3p was increased in MTX-resistant osteosarcoma cells.
Abstract: First-line treatment for osteosarcoma includes chemotherapy and surgery. However, the five-year survival rate of refractory osteosarcoma remains unsatisfactory. Osteosarcoma cancer stem cells, possessing stemness and chemoresistance, are one of the critical causes of poor response to chemotherapy. Elucidating regulatory signaling pathways of osteosarcoma cancer stem cells may provide a rationale for improving regimens against chemoresistant osteosarcoma. Methotrexate (MTX)-resistant osteosarcoma cells were established. microRNA expression profiles were used for detecting differentially expressed microRNA in resistant clones and the parental cells. microRNA target databases were employed to predict potential microRNA and mRNA interactions. Flow cytometry was performed to measure stem cell marker Prominin-1 (CD133)-positive cells. Immunofluorescence staining was applied to detect CD133 expression. miR-197-3p mimic or anti-miR-197-3p stably transfected cells were used to generate xenograft models. In the study, we found that miR-197-3p was increased in MTX-resistant cell lines. Overexpression of miR-197-3p enhanced the expression of cancer stem cell markers CD133, Octamer-binding protein 4 (OCT4), Transcription factor SOX-2 (SOX2), and Homeobox protein NANOG (NANOG), as well as chemoresistance-associated genes ATP-dependent translocase ABCB1 (ABCB1) and Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2), whereas miR-197-3p knockdown inhibited stemness and recovered sensitivity to MTX. We also classified the tumor suppressor Speckle-type POZ protein-like (SPOPL) as a target of miR-197-3p. The miR-197-3p mutation that could not combine SPOPL promoter regions was unable to sustain stemness or chemoresistance. Collectively, we discovered miR-197-3p conferred osteosarcoma stemness and chemotherapy resistance by targeting SPOPL, prompting promising therapeutic candidates for refractory osteosarcoma treatment.

Journal ArticleDOI
TL;DR: In this paper , a kelch domain-containing gene, specifically Kelch domain containing 8A (KLHDC8A) with a previously unknown function as an epigenetically driven oncogene was revealed.
Abstract: Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain–containing gene, specifically Kelch domain containing 8A (KLHDC8A) with a previously unknown function as an epigenetically driven oncogene. Targeting KLHDC8A decreased GSC proliferation and self-renewal, induced apoptosis, and impaired in vivo tumor growth. Transcription factor control circuitry analyses revealed that the master transcriptional regulator SOX2 stimulated KLHDC8A expression. Mechanistically, KLHDC8A bound chaperonin-containing TCP1 (CCT) to promote the assembly of primary cilia to activate hedgehog signaling. KLHDC8A expression correlated with Aurora B/C Kinase inhibitor activity, which induced primary cilia and hedgehog signaling. Combinatorial targeting of Aurora B/C kinase and hedgehog displayed augmented benefit against GSC proliferation. Collectively, superenhancer-based discovery revealed KLHDC8A as what we believe to be a novel molecular target of cancer stem cells that promotes ciliogenesis to activate the hedgehog pathway, offering insights into therapeutic vulnerabilities for glioblastoma treatment.

Journal ArticleDOI
TL;DR: In this paper , the identification of prostate cancer stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions are discussed, and the emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal and therapeutic response.
Abstract: Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.

Journal ArticleDOI
01 Mar 2023-Cancers
TL;DR: In this paper , the effects of AG1478, an EGFR inhibitor, on downstream signaling pathways were tested in three GBM-derived cell cultures with different methylation status of the MGMT promoter.
Abstract: Simple Summary Glioblastomas (GBM) are aggressive brain tumors with poor prognosis that need effective treatment. GBMs are characterized by extensive cellular and molecular heterogeneity which are reflected in patient-derived cell cultures, frequently used in testing potential therapeutics. Here, we established GBM-derived cell cultures from fresh tumor specimens and characterized them at the protein and molecular levels. We confirmed the considerable intertumor heterogeneity of GBMs. As the epidermal growth factor receptor (EGFR) is a subject of common oncogenic alterations in GBM, we tested anti-EGFR therapy combined with temozolomide (first-choice medication for GBM) or with doxorubicin (common therapeutic for various solid and blood cancers). We found that GBM-derived cells were more sensitive to a combined therapy than to monotherapy, particularly cells with inactive DNA repair mechanisms. Abstract Glioblastomas (GBM) are the most common, primary brain tumors in adults. Despite advances in neurosurgery and radio- and chemotherapy, the median survival of GBM patients is 15 months. Recent large-scale genomic, transcriptomic and epigenetic analyses have shown the cellular and molecular heterogeneity of GBMs, which hampers the outcomes of standard therapies. We have established 13 GBM-derived cell cultures from fresh tumor specimens and characterized them molecularly using RNA-seq, immunoblotting and immunocytochemistry. Evaluation of proneural (OLIG2, IDH1R132H, TP53 and PDGFRα), classical (EGFR) and mesenchymal markers (CHI3L1/YKL40, CD44 and phospho-STAT3), and the expression of pluripotency (SOX2, OLIG2, NESTIN) and differentiation (GFAP, MAP2, β-Tubulin III) markers revealed the striking intertumor heterogeneity of primary GBM cell cultures. Upregulated expression of VIMENTIN, N-CADHERIN and CD44 at the mRNA/protein levels suggested increased epithelial-to-mesenchymal transition (EMT) in most studied cell cultures. The effects of temozolomide (TMZ) or doxorubicin (DOX) were tested in three GBM-derived cell cultures with different methylation status of the MGMT promoter. Amongst TMZ- or DOX-treated cultures, the strongest accumulation of the apoptotic markers caspase 7 and PARP were found in WG4 cells with methylated MGMT, suggesting that its methylation status predicts vulnerability to both drugs. As many GBM-derived cells showed high EGFR levels, we tested the effects of AG1478, an EGFR inhibitor, on downstream signaling pathways. AG1478 caused decreased levels of phospho-STAT3, and thus inhibition of active STAT3 augmented antitumor effects of DOX and TMZ in cells with methylated and intermediate status of MGMT. Altogether, our findings show that GBM-derived cell cultures mimic the considerable tumor heterogeneity, and that identifying patient-specific signaling vulnerabilities can assist in overcoming therapy resistance, by providing personalized combinatorial treatment recommendations.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors found that plasmacytoma variant translocation 1 (PVT1) has a tumor-promoting effect on endometrial cancer; however, its mechanism of action in ECSCs is unknown.
Abstract: Tumor stem cells (TSCs) are thought to contribute to the progression and maintenance of cancer. Previous studies have suggested that plasmacytoma variant translocation 1 (PVT1) has a tumor-promoting effect on endometrial cancer; however, its mechanism of action in endometrial cancer stem cells (ECSCs) is unknown. Here, we found that PVT1 was highly expressed in endometrial cancers and ECSCs, correlated with poor patient prognosis, promoted the malignant behavior and the stemness of endometrial cancer cells (ECCs) and ECSCs. In contrast, miR-136, which was lowly expressed in endometrial cancer and ECSCs, had the opposite effect, and knockdown miR-136 inhibited the anticancer effects of down-regulated PVT1. PVT1 affected miR-136 specifically binding the 3' UTR region of Sox2 by competitively "sponging" miR-136, thus positively saving Sox2. Sox2 promoted the malignant behavior and the stemness of ECCs and ECSCs, and overexpression Sox2 inhibited the anticancer effects of up-regulated miR-136. Sox2 can act as a transcription factor to positively regulate Up-frameshift protein 1 (UPF1) expression, thereby exerting a tumor-promoting effect on endometrial cancer. In nude mice, simultaneously downregulating PVT1 and upregulating miR-136 exerted the strongest antitumor effect. We demonstrate that the PVT1/miR-136/Sox2/UPF1 axis plays an important role in the progression and maintenance of endometrial cancer. The results suggest a novel target for endometrial cancer therapies.

Journal ArticleDOI
TL;DR: In this article , the effects of lncRNA HOXA11-AS on regulating oral squamous cell carcinoma (OSCC) stem cell stemness and radiosensitivity by targeting miR-518a-3p/PDK1 were explored.
Abstract: OBJECTIVE Oral squamous cell carcinoma (OSCC) is the most prevailing oral malignancy. LncRNA HOXA11-AS shows prominent roles in OSCC. This study explored the effects of lncRNA HOXA11-AS on regulating OSCC stem cell stemness and radiosensitivity by targeting miR-518a-3p/PDK1. METHODS Human OSCC cell lines SCC9 and SCC15 were selected. CD133+ cancer stem cells (CSCs) were sorted by immunomagnetic beads. CD133 expression in cells and HOXA11-AS expression in SCC9, SCC15 and CD133+ SCC9, CD133+ SCC15 cells were assessed by flow cytometry and RT-qPCR. HOXA11-AS was silenced/overexpressed in SCC9, SCC15, CD133+ SCC9, and CD133+ SCC15 cells. Cell proliferation, radiosensitivity, invasion, and stem cell sphere formation ability were examined by CCK-8, colony formation, Transwell, and stem cell sphere formation. The levels of stemness-related genes (Oct4, Nanog, Sox2), miR-518a-3p, epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, Vimentin, N-cadherin), and PDK1 were assessed by RT-qPCR and Western blot assay. RESULTS HOXA11-AS was up-regulated in SCC9, SCC15, CD133+ SCC9, and CD133+ SCC15 cells. HOXA11-AS silencing inhibited OSCC proliferation and invasion and enhanced radiosensitivity. HOXA11-AS maintained CSC stemness in OSCC. HOXA11-AS silencing reduced CD133+ SCC9 and CD133+ SCC15 stem cell sphere formation ability, reduced stem cell stemness-related gene levels, and inhibited EMT. HOXA11-AS regulated OSCC stem cell stemness and radiosensitivity by targeting miR-518a-3p. PDK1 overexpression annulled the regulatory effects of HOXA11-AS silencing on OSCC cell stem cell stemness and radiosensitivity. CONCLUSION In vitro lncRNA HOXA11-AS silencing inhibited OSCC stem cell stemness by targeting the miR-518a-3p/PDK1 axis, thus enhancing OSCC cell radiosensitivity. This article is protected by copyright. All rights reserved.

Posted ContentDOI
08 Jun 2023-bioRxiv
TL;DR: In this paper , the authors used mouse embryonic stem (ES) cell-derived gastruloids to understand how metabolism impacts early mesoderm specification, and they used the glucose metabolism inhibitor 2-deoxy-D-glucose (2-DG).
Abstract: Patterning and growth are fundamental features of embryonic development that must be tightly coordinated during morphogenesis. As metabolism can control cell growth while also providing mechanistic links to developmental signalling pathways, it is ideally placed to enable this coordination. To understand how metabolism impacts early mesoderm specification, we used mouse embryonic stem (ES) cell-derived gastruloids, as these enable temporal control over metabolic manipulations and can be generated in large quantities. Gastruloids show mosaic expression of two glucose transporters, Slc2a1 and Slc2a3 both of which co-express with the expression of both the mesodermal marker T/Bra and the neural marker Sox2. To understand the significance of cellular glucose uptake in development, we used the glucose metabolism inhibitor 2-deoxy-D-glucose (2-DG). 2-DG specifically blocks the expression of T/Bra without affecting the expression of Sox2 and abolishes axial elongation in gastruloids. Surprisingly, removing glucose completely from the medium did not phenocopy 2-DG treatment despite a significant decline in glycolytic intermediates occurring under both conditions. As 2-DG can also act as a competitive inhibitor of mannose, we added mannose together with 2-DG and found that it could rescue the mesoderm specification. Together, our results show that while mannose is crucial for mesoderm specification, the glycolytic pathway is dispensable at early stages of T/Bra expression in gastruloids.


Journal ArticleDOI
TL;DR: In this article , the authors used transcriptome analysis and organoid technology to show that cells expressing SOX2 at higher levels are taste-competent progenitors that give rise to organoids comprising both TRCs and lingual epithelium.
Abstract: ABSTRACT Taste buds on the tongue contain taste receptor cells (TRCs) that detect sweet, sour, salty, umami and bitter stimuli. Like non-taste lingual epithelium, TRCs are renewed from basal keratinocytes, many of which express the transcription factor SOX2. Genetic lineage tracing has shown that SOX2+ lingual progenitors give rise to both taste and non-taste lingual epithelium in the posterior circumvallate taste papilla (CVP) of mice. However, SOX2 is variably expressed among CVP epithelial cells, suggesting that their progenitor potential may vary. Using transcriptome analysis and organoid technology, we show that cells expressing SOX2 at higher levels are taste-competent progenitors that give rise to organoids comprising both TRCs and lingual epithelium. Conversely, organoids derived from progenitors that express SOX2 at lower levels are composed entirely of non-taste cells. Hedgehog and WNT/β-catenin are required for taste homeostasis in adult mice. However, manipulation of hedgehog signaling in organoids has no impact on TRC differentiation or progenitor proliferation. By contrast, WNT/β-catenin promotes TRC differentiation in vitro in organoids derived from higher but not low SOX2+ expressing progenitors.

Journal ArticleDOI
24 Apr 2023
TL;DR: In this article , the authors summarize the current knowledge regarding SOX2 in the development of esophagus and ESCC, and highlight several therapeutic strategies for targeting SOX 2 in different cancer types.
Abstract: SOX2 is a transcription factor belonging to the SOX gene family, whose activity has been associated with the maintenance of the stemness and self-renewal of embryonic stem cells (ESCs), as well as the induction of differentiated cells into induced pluripotent stem cells (iPSCs). Moreover, accumulating studies have shown that SOX2 is amplified in various cancers, notably in esophageal squamous cell carcinoma (ESCC). In addition, SOX2 expression is linked to multiple malignant processes, including proliferation, migration, invasion, and drug resistance. Taken together, targeting SOX2 might shed light on novel approaches for cancer therapy. In this review, we aim to summarize the current knowledge regarding SOX2 in the development of esophagus and ESCC. We also highlight several therapeutic strategies for targeting SOX2 in different cancer types, which can provide new tools to treat cancers possessing abnormal levels of SOX2 protein.

Posted ContentDOI
31 Jan 2023
TL;DR: In this article , the effects of AG1478, an EGFR inhibitor, on downstream signaling pathways were tested in three GBM-derived cell cultures with different methylation status of the MGMT promoter and the strongest accumulation of apoptotic markers: caspase 7 and PARP were found in WG4 cells with methylated MGMT.
Abstract: Glioblastomas (GBM) are most common, primary brain tumors in adults. Despite advances in neurosurgery, radio- and chemotherapy, the median survival of GBM patients is 15 months. Recent large-scale genomic, transcriptomic and epigenetic analyses have shown the cellular and molecular heterogeneity of GBMs, which hampers the outcomes of standard therapies. We have established 13 GBM-derived cell cultures from fresh tumor specimens and characterized them molecularly using RNAseq, immunoblotting and immunocytochemistry. Evaluation of proneural (OLIG2, IDH1R132H, TP53 and PDGFRα), classical (EGFR) and mesenchymal markers (CHI3L1/YKL40, CD44 and phospho-STAT3), as well as expression of pluripotency (SOX2, OLIG2, NESTIN) and differentiation (GFAP, MAP2, β-Tubulin III) markers revealed the striking inter-tumor heterogeneity of primary GBM cell cultures. Upregulated expression of VIMENTIN, N-CADHERIN and CD44 at mRNA/protein levels suggested increased epithelial to mesenchymal transition (EMT) in most studied cell cultures. The effects of temozolomide (TMZ) or doxorubicin (DOX) were tested in three GBM-derived cell cultures with different methylation status of the MGMT promoter. Amongst TMZ- or DOX-treated cultures the strongest accumulation of apoptotic markers: caspase 7 and PARP were found in WG4 cells with methylated MGMT suggesting that its methylation status predicts vulnerability to both drugs. As many GBM-derived cells showed high EGFR levels, we tested the effects of AG1478, an EGFR inhibitor, on downstream signaling pathways. AG1478 caused decreased levels of phospho-STAT3, thus inhibition of active STAT3 augmented antitumor effects of DOX and TMZ in cells with methylated and intermediate status of MGMT. Altogether, our findings show that GBM-derived cell cultures mimic the considerable tumor heterogeneity and identifying patient-specific signaling vulnerabilities can assist in overcoming therapy resistance, by providing personalized combinatorial treatment recommendations.

Journal ArticleDOI
TL;DR: In this article , the Lin28 axis plays an immune-protective role for tumor-initiating cancer cells in hepatocellular carcinoma (HCC) patient samples showed a positive correlation between indoleamine 2,3-dioxygenase-1 (IDO1) and Lin28B.

Journal ArticleDOI
TL;DR: In this paper , the effect and potential molecular mechanism of Xihuang pill (XHP) on GSCs were evaluated using network pharmacology and bioinformatics methods, and a molecular network targeting GSC by the active ingredients in XHP was constructed.

Posted ContentDOI
27 Mar 2023-bioRxiv
TL;DR: In this article, a double protein-based reporter was used to identify ESCs that co-express the extra-embryonic factor GATA6 alongside the embryonic factor SOX2 in specific conditions.
Abstract: In early mammalian development, cleavage stage blastomeres and cells of the inner cell mass (ICM) of the blastocyst co-express embryonic and extra-embryonic transcriptional determinants. Using a double protein-based reporter we identify embryonic stem cells (ESC) that co-express the extra-embryonic factor GATA6 alongside the embryonic factor SOX2 in specific conditions. Based on single cell transcriptomics we find these population resemble unsegregated ICM, exhibiting enhanced differentiation potential for endoderm while maintaining epiblast competence and suggesting they represent an ideal model to determine how GATA6 and SOX2 influence each other’s DNA binding. To relate this binding to future fate, we describe a complete enhancer set in both ESCs and naïve extraembryonic endoderm stem cells and ask whether SOX2 and GATA6 recognize these elements in ICM-like ESC sub-population. Both factors support cooperative recognition in these lineages, with GATA6 bound alongside SOX2 on a fraction of pluripotency enhancers and SOX2 alongside GATA6 more extensively on endoderm enhancers. Our findings suggest that cooperative binding between these antagonistic factors both supports self-renewal and prepares progenitor cells for later differentiation.

Journal ArticleDOI
TL;DR: In this paper , the authors evaluated the association of the immunoexpression of cancer stem cell (CSC) markers with clinicopathological and survival outcomes in tongue squamous cell carcinoma (TSCC) patients.
Abstract: The objective was to evaluate the association of the immunoexpression of cancer stem cell (CSC) markers with clinicopathological and survival outcomes in tongue squamous cell carcinoma (TSCC) patients. This systematic review and meta-analysis [PROSPERO (CRD42021226791)] included observational studies that compared the association of clinicopathological and survival outcomes with CSC immunoexpression in TSCC patients. Pooled odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (CI) were used as outcome measures. Six studies identified the association with three surface markers (c-MET, STAT3, CD44) and four transcription markers (NANOG, OCT4, BMI, SOX2). The odds of early-stage presentation were 41% (OR = 0.59, 95% CI 0.42–0.83) and 75% (OR = 0.25; 95% CI 0.14–0.45) lower in CSC and SOX2 immuno-positive cases than immuno-negative cases, respectively. The odds of well-differentiated tumors in transcription marker immuno-positive cases were 45% lower compared to immuno-negative cases (OR = 0.55, 95% CI 0.32–0.96). The odds of positive lymph nodes were 2.01 times higher in CSC immuno-positive cases compared to immuno-negative cases (OR = 2.01, 95% CI 1.11–3.65). Mortality in immuno-positive cases was 121% higher than that in immuno-negative cases (HR = 2.21; 95% CI 1.16–4.21). Advanced tumor staging and grading, lymph node metastasis, and mortality were significantly associated with positive immunoexpression of CSC markers.

Journal ArticleDOI
TL;DR: In this paper , the role of exogenous SFRP1 on the stem cell phenotype in prostate cancer was explored, and the results revealed that cancer stem cell markers are significantly increased by exogenous sFRP 1 treatments, as well as the downstream target genes of the Wnt/-catenin pathway.
Abstract: Prostate cancer (PCa) ranks second in incidence and sixth in deaths globally. The treatment of patients with castration-resistant prostate cancer (CRPC) continues to be a significant clinical problem. Emerging evidence suggests that prostate cancer progression toward castration resistance is associated with paracrine signals from the stroma. SFRP1 is one of the extracellular proteins that modulate the WNT pathway, and it has been identified as a mediator of stromal epithelium communication. The WNT pathway is involved in processes such as cell proliferation, differentiation, cell anchoring, apoptosis, and cell cycle regulation as well as the regulation of stem cell populations in the prostatic epithelium. In the present study, we explored the role of exogenous SFRP1 on the stem cell phenotype in prostate cancer. The results reveal that cancer stem cell markers are significantly increased by exogenous SFRP1 treatments, as well as the downstream target genes of the Wnt/-catenin pathway. The pluripotent transcription factors SOX2, NANOG, and OCT4 were also up-regulated. Furthermore, SFRP1 promoted prostate cancer stem cell (PCSC) properties in vitro, including tumorsphere formation, migration, bicalutamide resistance, and decreased apoptosis. Taken together, our results indicate that SFRP1 participates in the paracrine signaling of epithelial cells, influencing them and positively regulating the stem cell phenotype through deregulation of the WNT/β-catenin pathway, which could contribute to disease progression and therapeutic failure. This research increases our molecular understanding of how CRPC progresses, which could help us find new ways to diagnose and treat the disease.

Journal ArticleDOI
TL;DR: In this paper , the authors used quantitative proteomics to identify SOX2 expression in three arsenite-transformed UROtsa cell lines and found that inhibition of SOX 2 would reduce stemness and increase sensitivity to cisplatin in the As3+transformed cells.
Abstract: Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. SOX2 expression is correlated to reduced overall and disease-free survival in UC. SOX2 drives malignant stemness and proliferation in UC cells and is associated with development of CIS resistance. Using quantitative proteomics, we identified that SOX2 was overexpressed in three arsenite (As3+)-transformed UROtsa cell lines. We hypothesized that inhibition of SOX2 would reduce stemness and increase sensitivity to CIS in the As3+-transformed cells. Pevonedistat (PVD) is a neddylation inhibitor and is a potent inhibitor of SOX2. We treated non-transformed parent and As3+-transformed cells with PVD, CIS, or in combination and monitored cell growth, sphere forming abilities, apoptosis, and gene/protein expression. PVD treatment alone caused morphological changes, reduced cell growth, attenuated sphere formation, induced apoptosis, and elevated the expression of terminal differentiation markers. However, the combined treatment of PVD with CIS significantly elevated the expression of terminal differentiation markers and eventually led to more cell death than either solo treatment. Aside from a reduced proliferation rate, these effects were not seen in the parent. Further research is needed to explore the potential use of PVD with CIS as a differentiation therapy or alternative treatment for MIUC tumors that may have become resistant to CIS.

Journal ArticleDOI
TL;DR: This paper showed that focal ischemia stimulates a transient wave of local neurogenesis in mouse cerebral cortex following mild ischemic lesion and showed that Sox2-positive astrocytes were the major neurogenic cells in adult cortex.

Journal ArticleDOI
TL;DR: In this paper , the authors analyzed molecular programs of stemness (Oct-4; SOX2; Nanog), cell senescence, p19, p21 (WAF1/CIP1), p53, and stress response in WJ-MSCs exposed to microgravity.
Abstract: Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. Wharton’s jelly is a tissue in the umbilical cord that contains mesenchymal stromal cells (MSCs) with a high plasticity and differentiation potential. Their regeneration capability is compromised by cell damage and aging. The main cause of cell damage is oxidative stress coming from an imbalance between oxidant and antioxidant species. Microgravity represents a stressing condition able to induce ROS production, ultimately leading to different subcellular compartment damages. Here, we analyzed molecular programs of stemness (Oct-4; SOX2; Nanog), cell senescence, p19, p21 (WAF1/CIP1), p53, and stress response in WJ-MSCs exposed to microgravity. From our results, we can infer that a simulated microgravity environment is able to influence WJ-MSC behavior by modulating the expression of stress and stemness-related genes, cell proliferation regulators, and both proapoptotic and antiapoptotic genes. Our results suggest a cellular adaptation addressed to survival occurring during the first hours of simulated microgravity, followed by a loss of stemness and proliferation capability, probably related to the appearance of a molecular program of senescence.