scispace - formally typeset
Search or ask a question

Showing papers by "Akiko Watanabe published in 2019"


Journal ArticleDOI
TL;DR: The results suggest that inflammatory/oxidative insults in early brain development result in upregulated H2S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes.
Abstract: Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as-yet-unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detected elevated levels of Mpst, a hydrogen sulfide (H2 S)/polysulfide-producing enzyme, and greater sulfide deposition in C3H than B6 mice. Mpst-deficient mice exhibited improved PPI with reduced storage sulfide levels, while Mpst-transgenic (Tg) mice showed deteriorated PPI, suggesting that "sulfide stress" may be linked to PPI impairment. Analysis of human samples demonstrated that the H2 S/polysulfides production system is upregulated in schizophrenia. Mechanistically, the Mpst-Tg brain revealed dampened energy metabolism, while maternal immune activation model mice showed upregulation of genes for H2 S/polysulfides production along with typical antioxidative genes, partly via epigenetic modifications. These results suggest that inflammatory/oxidative insults in early brain development result in upregulated H2 S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes. Collectively, this study presents a novel aspect of the neurodevelopmental theory for schizophrenia, unraveling a role of excess H2 S/polysulfides production.

42 citations


Journal ArticleDOI
TL;DR: This work demonstrates a novel physiological role for autophagy in regulating GABA signaling beyond postnatal neurodevelopment, providing a potential mechanism for the reduced inhibitory inputs observed in neurodevelopmental and neuropsychiatric disorders with mTOR hyperactivation.
Abstract: Dysfunctional mTOR signaling is associated with the pathogenesis of neurodevelopmental and neuropsychiatric disorders. However, it is unclear what molecular mechanisms and pathogenic mediators are involved and whether mTOR-regulated autophagy continues to be crucial beyond neurodevelopment. Here, we selectively deleted Atg7 in forebrain GABAergic interneurons in adolescent mice and unexpectedly found that these mice showed a set of behavioral deficits similar to Atg7 deletion in forebrain excitatory neurons. By unbiased quantitative proteomic analysis, we identified γ-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2) to differentially form high-molecular weight species in autophagy-deficient brains. Further functional analyses revealed a novel pathogenic mechanism involving the p62-dependent sequestration of GABARAP family proteins, leading to the reduction of surface GABAA receptor levels. Our work demonstrates a novel physiological role for autophagy in regulating GABA signaling beyond postnatal neurodevelopment, providing a potential mechanism for the reduced inhibitory inputs observed in neurodevelopmental and neuropsychiatric disorders with mTOR hyperactivation.

31 citations