scispace - formally typeset
Search or ask a question

Showing papers by "Andrea Cossarizza published in 2016"


Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations


Journal ArticleDOI
TL;DR: This review will focus on recent advances and views on the role that modifications of cell signalling and remodelling of the immune response play during human aging and longevity, paying particular attention to phenomena which are linked to the so called inflammaging process.
Abstract: Major advances in preventing, delaying, or curing individual pathologies are responsible for an increasingly long life span in the developed parts of our planet, and indeed reaching eight to nine decades of life is nowadays extremely frequent. However, medical and sanitary advances have not prevented or delayed the underlying cause of the disparate pathologies occurring in the elderly: aging itself. The identification of the basis of the aging processes that drives the multiple pathologies and loss of function typical of older individuals is a major challenge in current aging research. Among the possible causes, an impairment of the immune system plays a major role, and indeed numerous studies have described immunological changes which occur with age. Far from the intention of being exhaustive, this review will focus on recent advances and views on the role that modifications of cell signalling and remodelling of the immune response play during human aging and longevity, paying particular attention to phenomena which are linked to the so called inflammaging process, such as dysregulation of innate immunity, altered T-cell or B-cell maturation and differentiation, as well as to the implications of immune aging for vaccination strategies in the elderly.

301 citations


Journal ArticleDOI
TL;DR: The role of inflammation and immune activation on the most important non‐AIDS‐related complications of chronic HIV infection, and the contribution of aging per se to this scenario are discussed.
Abstract: Nowadays, HIV+ patients have an expected lifespan that is only slightly shorter than healthy individuals. For this reason, along with the fact that infection can be acquired at a relatively advanced age, the effects of ageing on HIV+ people have begun to be evident. Successful anti-viral treatment is, on one hand, responsible for the development of side effects related to drug toxicity; on the other hand, it is not able to inhibit the onset of several complications caused by persistent immune activation and chronic inflammation. Therefore, patients with a relatively advanced age, i.e. aged more than 50 years, can experience pathologies that affect much older citizens. HIV+ individuals with non-AIDS-related complications can thus come to the attention of clinicians because of the presence of neurocognitive disorders, cardiovascular diseases, metabolic syndrome, bone abnormalities and non-HIV-associated cancers. Chronic inflammation and immune activation, observed typically in elderly people and defined as 'inflammaging', can be present in HIV+ patients who experience a type of premature ageing, which affects the quality of life significantly. This relatively new condition is extremely complex, and important factors have been identified as well as the traditional behavioural risk factors, e.g. the toxicity of anti-retroviral treatments and the above-mentioned chronic inflammation leading to a functional decline and a vulnerability to injury or pathologies. Here, we discuss the role of inflammation and immune activation on the most important non-AIDS-related complications of chronic HIV infection, and the contribution of aging per se to this scenario.

181 citations


Journal ArticleDOI
TL;DR: Mutations of Lon, which likely impair its chaperone properties, are at the basis of a genetic inherited disease named of the cerebral, ocular, dental, auricular, skeletal (CODAS) syndrome.

82 citations



Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (697)
TL;DR: Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; A Frozena, AA; Adachi, H, Adeli, K, Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghis
Abstract: Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Abadie, N; Anel, A; Ann, DK; Anoopkumar-Dukie, S; Antonioli, M; Aoki, H; Apostolova, N; Aquila, S; Aquilano, K; Araki, K; Arama, E; Aranda, A; Araya, J; Arcaro, A; Arias, E; Arimoto, H; Ariosa, AR; Armstrong, JL; Arnould, T; Arsov, I; Asanuma, K; Askanas, V; Asselin, E; Atarashi, R; Atherton, SS; Atkin, JD; Attardi, LD; Auberger, P; Auburger, G; Aurelian, L; Autelli, R

54 citations


Journal ArticleDOI
TL;DR: The Electrolyte Gated Organic Field Effect Transistor (EGOFET) is an ultrasensitive and specific device that allows us to quantitatively assess the thermodynamics of biomolecular recognition between a human antibody and its antigen, namely, the inflammatory cytokine TNFα at the solid/liquid interface.
Abstract: Biorecognition is a central event in biological processes in the living systems that is also widely exploited in technological and health applications. We demonstrate that the Electrolyte Gated Organic Field Effect Transistor (EGOFET) is an ultrasensitive and specific device that allows us to quantitatively assess the thermodynamics of biomolecular recognition between a human antibody and its antigen, namely, the inflammatory cytokine TNFα at the solid/liquid interface. The EGOFET biosensor exhibits a superexponential response at TNFα concentration below 1 nM with a minimum detection level of 100 pM. The sensitivity of the device depends on the analyte concentration, reaching a maximum in the range of clinically relevant TNFα concentrations when the EGOFET is operated in the subthreshold regime. At concentrations greater than 1 nM the response scales linearly with the concentration. The sensitivity and the dynamic range are both modulated by the gate voltage. These results are explained by establishing the correlation between the sensitivity and the density of states (DOS) of the organic semiconductor. Then, the superexponential response arises from the energy-dependence of the tail of the DOS of the HOMO level. From the gate voltage-dependent response, we extract the binding constant, as well as the changes of the surface charge and the effective capacitance accompanying biorecognition at the electrode surface. Finally, we demonstrate the detection of TNFα in human-plasma derived samples as an example for point-of-care application.

52 citations


Journal ArticleDOI
13 Nov 2016-AIDS
TL;DR: Low CD4+/CD8+ ratio despite effective combined antiretroviral therapy is associated with altered iNKT cell subsets, enhanced activation, and prominent Th1/Th17 proinflammatory profile.
Abstract: Introduction Scanty data exist on the phenotype and functionality of invariant natural killer T (iNKT) cells in HIV-infected (HIV+) patients. Methods By flow cytometry, we studied iNKT cells from 54 HIV+ patients who started combined antiretroviral therapy and had undetectable viral load for more than 1 year. Twenty-five maintained a CD4/CD8 ratio less than 0.4, whereas 29 reached a ratio more than 1.1; 32 age-matched and sex-matched patients were healthy controls (CTR). Results Patients with low ratio had lower percentage of CD4 iNKT cells compared with patients with high ratio and higher CD8 iNKT cell percentage; double-negative iNKT cells were lower in HIV+ patients compared with CTR. Patients with low ratio had higher percentage of CD4 and double-negative iNKT cells expressing CD38 and HLA-DR compared with patients with high ratio. CD4 iNKT cells expressing PD-1 were higher in patients with CD4/CD8 ratio less than 0.4, whereas double-negative iNKT cells expressing PD-1 were lower compared with patients with ratio more than 1.1. Patients with low ratio had higher CD4 iNKT cells producing IL-17, CD8 iNKT cells producing IFN-γ, TNF-α or IFN-γ and TNF-α, and double-negative iNKT cells producing IL-17 or IL-17 and IFN-γ compared with CTR. Activated CD4 (or CD8) T cells correlated with activated CD4 (or CD8) iNKT cells, as well as the percentages of CD4 (or CD8) T cells expressing PD-1 was correlated to that of CD4 (or CD8) iNKT cells expressing PD-1. Conclusion Low CD4/CD8 ratio despite effective combined antiretroviral therapy is associated with altered iNKT cell subsets, enhanced activation, and prominent Th1/Th17 proinflammatory profile.

27 citations


Journal ArticleDOI
09 Dec 2016-PLOS ONE
TL;DR: A complex remodelling of the TNFα-T NFα receptor system thus takes place in patients treated with anti-TNF-α drugs, that involves either the production of anti-drug antibodies or the modulation of monocyte phenotype or inflammatory activity.
Abstract: TNF-α has a central role in the development and maintenance of psoriatic plaques, and its serum levels correlate with disease activity. Anti-TNF-α drugs are, however, ineffective in a relevant percentage of patients for reasons that are currently unknown. To understand whether the response to anti-TNF-α drugs is influenced by the production of anti-drug antibodies or by the modulation of the TNFα-TNFα receptor system, and to identify changes in monocyte phenotype and activity, we analysed 119 psoriatic patients who either responded or did not respond to different anti-TNF-α therapies (adalimumab, etanercept or infliximab), and measured plasma levels of TNF-α, TNF-α soluble receptors, drug and anti-drug antibodies. Moreover, we analyzed the production of TNF-α and TNF-α soluble receptors by peripheral blood mononuclear cells (PBMCs), and characterized different monocyte populations. We found that: i) the drug levels varied between responders and non-responders; ii) anti-infliximab antibodies were present in 15% of infliximab-treated patients, while anti-etanercept or anti-adalimumab antibodies were never detected; iii) plasma TNF-α levels were higher in patients treated with etanercept compared to patients treated with adalimumab or infliximab; iv) PBMCs from patients responding to adalimumab and etanercept produced more TNF-α and sTNFRII in vitro than patients responding to infliximab; v) PBMCs from patients not responding to infliximab produce higher levels of TNF-α and sTNFRII than patients responding to infliximab; vi) anti- TNF-α drugs significantly altered monocyte subsets. A complex remodelling of the TNFα-TNFα receptor system thus takes place in patients treated with anti-TNF-α drugs, that involves either the production of anti-drug antibodies or the modulation of monocyte phenotype or inflammatory activity.

26 citations


Journal ArticleDOI
TL;DR: The data suggest that the progressive phase of the disease is characterized by permanent iNKT activation and a skewing towards an inflammatory phenotype.
Abstract: Background. Multiple Sclerosis (MS), an autoimmune disease with neurodegeneration and inflammation, is characterized by several alterations of different T cell subsets. However, few data exist on the role of iNKT lymphocytes. Objective. To identify possible changes in the phenotype of iNKT cells in patients with different clinical forms of MS, and find alterations in their polyfunctionality (i.e., ability to produce simultaneously up to 4 cytokines such as IL-17, TNF-α, IFN-γ, IL-4). Methods. We studied a total of 165 patients, 91 with a Relapsing Remitting form [RR; 31 were treated with interferon (IFN)1-β, 25 with natalizumab (Nat), 29 with glatiramer acetate (Gla); 17 were newly-diagnosed RR without treatment, 19 not active RR without treatment]. Forty-four patients had a Progressive MS: 20 Primary Progressive (PP), 24 Secondary Progressive (SP). A total of 55 age- and sex-matched subjects represented healthy controls (CTR). Among fresh peripheral blood mononuclear cells (PBMC) iNKT cells were identified by flow cytometry. Moreover, the capability of iNKT cells to produce different cytokines (IL-17, TNF-α, IFN-γ, and IL-4) after in vitro stimulation were evaluated in 18 RR (11 treated with Nat and 7 with IFN), 4 PP, 6 SP and 16 CTR. Results. No main differences were found in iNKT cell phenotype among MS patients with different MS forms, or during different treatments. However, the polyfunctional response of iNKT cells showed Th1 and Th17 profiles. This was well evident in patients with secondary progressive form, who are characterized by high levels of inflammation and neurodegeneration, and exhibited a sustained increase in the production of Th17 cytokines. Patients treated with natalizumab displayed lower levels of iNKT cells producing IL-17, TNF-α and IFN-γ. Conclusion. Our data suggest that the progressive phase of the disease is characterized by permanent iNKT activation and a skewing towards an inflammatory phenotype. Compared to other treatments, natalizumab was able to modulate iNKT cell function.

23 citations


Journal ArticleDOI
TL;DR: Regular physical activity appeared associated with lower levels of circulating mtDNA, further confirming the protective, anti-inflammatory effect of exercise.
Abstract: Purpose: Exercise exerts various effects on the immune system, and evidence is emerging on its anti-inflammatory effects; the mechanisms on the basis of these modifications are poorly understood. Mitochondrial DNA (mtDNA) released from damaged cells acts as a molecule containing the so-called damage-associated molecular patterns and can trigger sterile inflammation. Indeed, high plasma levels of mtDNA are associated to several inflammatory conditions and physiological aging and longevity. The authors evaluated plasma mtDNA in professional male volleyball players during seasonal training and the possible correlation between mtDNA levels and clinical parameters, body composition, and physical performance. Methods: Plasma mtDNA was quantified by real-time PCR every 2 mo in 12 professional volleyball players (PVPs) during 2 consecutive seasons. As comparison, 20 healthy nonathlete male volunteers (NAs) were analyzed. Results: The authors found lower levels of mtDNA in plasma of PVPs than in NAs. However, PVPs...

Journal ArticleDOI
TL;DR: Investigation of an optimized method for cryopreservation of human bone-marrow fragments for application in cell banking procedures where stem-cell expansion and use are not immediately needed implies that minimal processing may be adequate for the banking of tissue samples with no requirement for the immediate isolation and use of hBM-MSCs.
Abstract: Adult mesenchymal stem cells are a promising source for cell therapies and tissue engineering applications. Current procedures for banking of human bone-marrow mesenchymal stem cells (hBM-MSCs) require cell isolation and expansion, and thus the use of large amounts of animal sera. However, animal-derived culture supplements have the potential to trigger infections and severe immune reactions. The aim of this study was to investigate an optimized method for cryopreservation of human bone-marrow fragments for application in cell banking procedures where stem-cell expansion and use are not immediately needed. Whole trabecular fragments enclosing the bone marrow were stored in liquid nitrogen for 1 year in a cryoprotective solution containing a low concentration of dimethyl sulfoxide and a high concentration of human serum (HuS). After thawing, the isolation, colony-forming-unit ability, proliferation, morphology, stemness-related marker expression, cell senescence, apoptosis, and multi-lineage differentiation potential of hBM-MSCs were tested in media containing HuS compared with hBM-MSCs isolated from fresh fragments. Human BM-MSCs isolated from cryopreserved fragments expressed MSC markers until later passages, had a good proliferation rate, and exhibited the capacity to differentiate toward osteogenic, adipogenic, and myogenic lineages similar to hBM-MSCs isolated from fresh fragments. Moreover, the cryopreservation method did not induce cell senescence or cell death. These results imply that minimal processing may be adequate for the banking of tissue samples with no requirement for the immediate isolation and use of hBM-MSCs, thus limiting cost and the risk of contamination, and facilitating banking for clinical use. Furthermore, the use of HuS for cryopreservation and expansion/differentiation has the potential for clinical application in compliance with good manufacturing practice standards.

Journal ArticleDOI
TL;DR: A novel approach to detect simultaneously mitochondrial hydrogen peroxide and mitochondrial superoxide in living cells is described and used to quantify mitochondrial ROS in CD4+ and CD8+ T cells form patients affected by Down syndrome and age‐ and sex‐matched healthy donors.
Abstract: Reactive oxygen species (ROS) are constantly produced in cells, mainly by mitochondria, as a consequence of aerobic respiration. Most ROS derive from superoxide, which is rapidly converted to hydrogen peroxide. ROS are involved in the regulation of several physiological and pathological processes, and the possibility to measure them simultaneously is needed, when the redox status of the cells is modified by experimental/biological conditions. Flow cytometry is the main technology that generates multiple information at the single cell level in a high-throughput manner, and gives rapid and quantitative measurements of different ROS with high sensitivity and reproducibility. Here, we describe a novel approach to detect simultaneously mitochondrial hydrogen peroxide and mitochondrial superoxide in living cells. The staining has been performed by using the fluorescent dyes MitoSOX Red Mitochondrial Superoxide Indicator, Mitochondria Peroxy Yellow 1, Annexin-V Pacific Blue conjugate, TO-PRO-3 iodide, anti-CD4-APC-Cy7 and -CD8-Pacific Orange mAbs. We used this approach to quantify mitochondrial ROS in CD4+ and CD8+ T cells form patients affected by Down syndrome and age- and sex-matched healthy donors. © 2016 International Society for Advancement of Cytometry.

Journal ArticleDOI
TL;DR: Six mitochondrial proteases are focused on, namely CLPP, HTRA2 and LONP1, by analysing the current knowledge about their functions, their involvement in the pathogenesis of human diseases, and the compounds currently available for inhibiting their functions.
Abstract: The preservation of mitochondrial function and integrity is critical for cell viability. Under stress conditions, unfolded, misfolded or damaged proteins accumulate in a certain compartment of the organelle, interfering with oxidative phosphorylation and normal mitochondrial functions. In stress conditions, several mechanisms, including mitochondrial unfolded protease response (UPRmt), fusion and fission, and mitophagy are engaged to restore normal proteostasis of the organelle. Mitochondrial proteases are a family of more than 20 enzymes that not only are involved in the UPRmt, but actively participate at multiple levels in the stress-response system. Alterations in their expression levels, or mutations that determine loss or gain of function of these proteases deeply impair mitochondrial functionality and can be associated with the onset of inherited diseases, with the development of neurodegenerative disorders and with the process of carcinogenesis. In this review, we focus our attention on six of them, namely CLPP, HTRA2 and LONP1, by analysing the current knowledge about their functions, their involvement in the pathogenesis of human diseases, and the compounds currently available for inhibiting their functions.

Journal ArticleDOI
25 Aug 2016-PLOS ONE
TL;DR: Differences between healthy subjects and patients with ectopic calcification indicate that polychromatic flow cytometry may be useful to better evaluate endothelial dysfunction in a clinical context.
Abstract: INTRODUCTION Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. METHODS Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. RESULTS This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. CONCLUSION Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context.

Journal ArticleDOI
TL;DR: TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications.
Abstract: A collaborative consortium, named "TRANSAUTOPHAGY," has been created among European research groups, comprising more than 150 scientists from 21 countries studying diverse branches of basic and translational autophagy. The consortium was approved in the framework of the Horizon 2020 Program in November 2015 as a COST Action of the European Union (COST means: CO-operation in Science and Technology), and will be sponsored for 4 years. TRANSAUTOPHAGY will form an interdisciplinary platform for basic and translational researchers, enterprises and stakeholders of diverse disciplines (including nanotechnology, bioinformatics, physics, chemistry, biology and various medical disciplines). TRANSAUTOPHAGY will establish 5 different thematic working groups, formulated to cooperate in research projects, share ideas, and results through workshops, meetings and short term exchanges of personnel (among other initiatives). TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications.