scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers in Immunology in 2016"


Journal ArticleDOI
TL;DR: This review summarizes the current understanding of the role of mast cells in many pathophysiological conditions and describes how mast cells regulate vasodilation, vascular homeostasis, innate and adaptive immune responses, angiogenesis, and venom detoxification are implicated.
Abstract: Mast cells are immune cells of the myeloid lineage and are present in connective tissues throughout the body. The activation and degranulation of mast cells significantly modulates many aspects of physiological and pathological conditions in various settings. With respect to normal physiological functions, mast cells are known to regulate vasodilation, vascular homeostasis, innate and adaptive immune responses, angiogenesis, and venom detoxification. On the other hand, mast cells have also been implicated in the pathophysiology of many diseases, including allergy, asthma, anaphylaxis, gastrointestinal disorders, many types of malignancies, and cardiovascular diseases. This review summarizes the current understanding of the role of mast cells in many pathophysiological conditions.

558 citations


Journal ArticleDOI
TL;DR: It is suggested that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution and several events enact a decrease in the local chemokine concentration, essential to inhibit further infiltration of neutrophils into the tissue.
Abstract: An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as ‘resolution pharmacology’.

436 citations


Journal ArticleDOI
TL;DR: This review summarizes the current understanding of the molecular mechanisms underlying the cross-regulation between the NF-κB and Wnt/β-catenin pathways and discusses their involvement in inflammation and inflammation-associated diseases such as cancer.
Abstract: Besides its important role in embryonic development and homeostatic self-renewal in adult tissues, Wnt/β-catenin signaling exerts both anti-inflammatory and proinflammatory functions. This is, at least partially, due to either repressing or enhancing the NF-κB pathway. Similarly, the NF-κB pathway either positively or negatively regulates Wnt/β-catenin signaling. Different components of the two pathways are involved in this crosstalk, forming a complex regulatory network. This review summarizes our current understanding of the molecular mechanisms underlying the cross-regulation between the two pathways and discusses their involvement in inflammation and inflammation-associated diseases such as cancer.

423 citations


Journal ArticleDOI
TL;DR: The PD-1:PD-L1/L2 pathway also mediates potent inhibitory signals to hinder the proliferation and function of T effector cells and have inimical effects on antiviral and antitumor immunity.
Abstract: The immune system maintains a critically organized network to defend against foreign particles, while evading self-reactivity simultaneously. T lymphocytes function as effectors and play an important regulatory role to orchestrate the immune signals. Although central tolerance mechanism results in the removal of the most of the autoreactive T cells during thymic selection, a fraction of self-reactive lymphocytes escapes to the periphery and pose a threat to cause autoimmunity. The immune system evolved various mechanisms to constrain such autoreactive T cells and maintain peripheral tolerance, including T cell anergy, deletion, and suppression by regulatory T cells (TRegs). These effects are regulated by a complex network of stimulatory and inhibitory receptors expressed on T cells and their ligands, which deliver cell-to-cell signals that dictate the outcome of T cell encountering with cognate antigens. Among the inhibitory immune mediators, the pathway consisting of the programed cell death 1 (PD-1) receptor (CD279) and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273) plays an important role in the induction and maintenance of peripheral tolerance and for the maintenance of the stability and the integrity of T cells. However, the PD-1:PD-L1/L2 pathway also mediates potent inhibitory signals to hinder the proliferation and function of T effector cells and have inimical effects on antiviral and antitumor immunity. Therapeutic targeting of this pathway has resulted in successful enhancement of T cell immunity against viral pathogens and tumors. Here, we will provide a brief overview on the properties of the components of the PD-1 pathway, the signaling events regulated by PD-1 engagement, and their consequences on the function of T effector cells.

383 citations


Journal ArticleDOI
TL;DR: The immunologic and metabolic functions of AT macrophages and their different facets in obesity and the metabolic syndrome are reviewed.
Abstract: Immune cell infiltration in (white) adipose tissue (AT) during obesity is associated with the development of insulin resistance. In AT, the main population of leukocytes are macrophages. Macrophages can be classified into two major populations: M1, classically activated macrophages, and M2, alternatively activated macrophages, although recent studies have identified a broad range of macrophage subsets. During obesity, AT M1 macrophage numbers increase and correlate with AT inflammation and insulin resistance. Upon activation, pro-inflammatory M1 macrophages induce aerobic glycolysis. By contrast, in lean humans and mice, the number of M2 macrophages predominates. M2 macrophages secrete anti-inflammatory cytokines and utilize oxidative metabolism to maintain AT homeostasis. Here, we review the immunologic and metabolic functions of AT macrophages and their different facets in obesity and the metabolic syndrome.

380 citations


Journal ArticleDOI
TL;DR: The results show that murine epithelial cell-specific Btnl proteins can form intrafamily heterocomplexes and suggest that the interaction between BtNL proteins and IELs regulates the expansion of Iels in the intestinal mucosa.
Abstract: To date, few molecular conduits mediating the cross-talk between intestinal epithelial cells and intraepithelial lymphocytes (IELs) have been described. We recently showed that Butyrophilin-like (Btnl) 1 can attenuate the epithelial response to activated IELs, resulting in reduced production of pro-inflammatory mediators such as IL-6 and CXCL1. We here report that like Btnl1, murine Btnl6 expression is primarily confined to the intestinal epithelium. Although Btnl1 can exist in a cell surface-expressed homomeric form, we found that it additionally forms heteromeric complexes with Btnl6, and that the engagement of Btnl1 is a prerequisite for surface expression of Btnl6 on intestinal epithelial cells. In an IEL-epithelial cell co-culture system, enforced epithelial cell expression of Btnl1 significantly enhanced the proliferation of IELs in the absence of exogenous activation. The effect on proliferation was dependent on the presence of IL-2 or IL-15 and restricted to IELs upregulating CD25. In the gamma delta (gd) T-cell subset, the Btnl1-Btnl6 complex, but not Btnl1, specifically elevated the proliferation of IELs bearing the Vg7Vd4 receptor. Thus, our results show that murine epithelial cell-specific Btnl proteins can form intrafamily heterocomplexes, and suggest that the interaction between Btnl proteins and IELs regulates the expansion of IELs in the intestinal mucosa.

377 citations


Journal ArticleDOI
TL;DR: The role of lactate is discussed as an immunosuppressor molecule that contributes to tumor evasion and the possibility of targeting lactate metabolism for cancer treatment, as well as of using lactate as a prognostic biomarker.
Abstract: Malignant transformation of cells leads to enhanced glucose uptake and the conversion of a larger fraction of pyruvate into lactate, even under normoxic conditions; this phenomenon of aerobic glycolysis is largely known as the Warburg effect. This metabolic reprogramming serves to generate biosynthetic precursors, thus facilitating the survival of rapidly proliferating malignant cells. Extracellular lactate directs the metabolic reprogramming of tumor cells, thereby serving as an additional selective pressure. Besides tumor cells, stromal cells are another source of lactate production in the tumor microenvironment, whose role in both tumor growth and the anti-tumor immune response is the subject of intense research. In this review, we provide an integral perspective of the relationship between lactate and the overall tumor microenvironment, from lactate structure to metabolic pathways for its synthesis, receptors, signaling pathways, lactate-producing cells, lactate-responding cells, and how all contribute to the tumor outcome. We discuss the role of lactate as a immunosuppressor molecule that contributes to tumor evasion and explore the possibility of targeting lactate metabolism for cancer treatment, as well as of using lactate as a prognostic biomarker.

356 citations


Journal ArticleDOI
TL;DR: Since estrogen has varied effects in female-predominant autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus, it is mechanistically postulate the potential differential role of estrogen in these chronic debilitating diseases.
Abstract: Analogous to other physiological systems, the immune system also demonstrates remarkable sex differences. Although the reasons for sex differences in immune responses are not precisely understood, it potentially involves differences in sex hormones (estrogens, androgens, and differential sex hormone receptor-mediated events), X-chromosomes, microbiome, epigenetics among others. Overall, females tend to have more responsive and robust immune system compared to their male counterparts. It is therefore not surprising that females respond more aggressively to self-antigens and are more susceptible to autoimmune diseases. Female hormone (estrogen or 17β-estradiol) can potentially act on all cellular subsets of the immune system through estrogen receptor-dependent and -independent mechanisms. This minireview highlights differential expression of estrogen receptors on immune cells, major estrogen-mediated signaling pathways, and their effect on immune cells. Since estrogen has varied effects in female-predominant autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus, we will mechanistically postulate the potential differential role of estrogen in these chronic debilitating diseases.

315 citations


Journal ArticleDOI
TL;DR: Only NK-92 cells can easily be genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through antibody-dependent cellular cytotoxicity, and is the only cell line product that has been infused into patients with advanced cancer with clinical benefit and minimal side effects.
Abstract: Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

309 citations


Journal ArticleDOI
TL;DR: Promising results indicate a potential use of the inhibitors of the hypoxia–adenosine pathway for cancer immunotherapy.
Abstract: Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage anti-tumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia-adenosine pathway for cancer immunotherapy.

285 citations


Journal ArticleDOI
TL;DR: The major steps of the adaptive immune reconstitution are summarized and the importance of immune balance in patients after HSCT is discussed and the need for better understanding and enhancing the process of immune reconStitution is discussed.
Abstract: The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT.

Journal ArticleDOI
TL;DR: The findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage.
Abstract: Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered.

Journal ArticleDOI
TL;DR: Evidence is presented supporting the concept of “Inflamm-Aging,” or inflammation-associated aging of hematopoiesis, which is discussed how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematoietic aging.
Abstract: All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of "Inflamm-Aging," or inflammation-associated aging of hematopoiesis.

Journal ArticleDOI
TL;DR: Recent knowledge on the pathophysiological role of NETs in pulmonary diseases as well as some experimental and clinical approaches to modulate their detrimental effects are summarized.
Abstract: Neutrophil extracellular traps (NETs) arise from the release of granular and nuclear contents of neutrophils in the extracellular space in response to different classes of microorganisms, soluble factors and host molecules. NETs are composed by decondensed chromatin fibers coated with antimicrobial granular and cytoplasmic proteins, such as myeloperoxidase, neutrophil elastase, and α-defensins. Besides being expressed on NET fibers, neutrophil elastase and myeloperoxidase also regulate NET formation. Furthermore, histone deimination by peptidylarginine deiminase 4 (PAD4) is a central step to NET formation. NET formation has been widely demonstrated to be an effective mechanism to fight against invading microorganisms, as deficiency in NET release or dismantling NET backbone by bacterial DNases render the host susceptible to infections. Therefore, the primary role of NETs is to prevent microbial dissemination, avoiding overwhelming infections. However, an excess of NET formation has a dark side. The pathogenic role of NETs has been described for many human diseases, infectious and non-infectious. The detrimental effect of excessive NET release is particularly important to lung diseases, because NETs can expand more easily in the pulmonary alveoli, causing lung injury. Moreover, NETs and its associated molecules are able to directly induce epithelial and endothelial cell death. In this regard, massive NET formation has been reported in several pulmonary diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, respiratory syncytial virus bronchiolitis, influenza, bacterial pneumonia, and tuberculosis, among others. Thus, NET formation must be tightly regulated in order to avoid NET-mediated tissue damage. Recent development of therapies targeting NETs in pulmonary diseases includes DNA disintegration with recombinant human DNase, neutralization of NET proteins, with anti-histone antibodies and protease inhibitors. In this review, we summarize the recent knowledge on the pathophysiological role of NETs in pulmonary diseases as well as some experimental and clinical approaches to modulate their detrimental effects.

Journal ArticleDOI
TL;DR: It is important to understand how PM composition can generate several pulmonary pathologies, and outdoor air pollution was classified as Group 1 by IARC based on all research studies data about air pollution effects.
Abstract: Urban air pollution is a serious worldwide problem due to its impact on human health. In the past sixty years, growing evidence established a correlation between exposure to air pollutants and the developing of severe respiratory diseases. Recently Particulate matter (PM) is drawing more public attention to various aspects including historical backgrounds, physicochemical characteristics and its pathological role. Therefore, this review is focused on these aspects. The most famous air pollution disaster happened in London on December 1952; it has been calculated that more than 4000 deaths occurred during this event. Air pollution is a complex mix of gases and particles. Gaseous pollutants disseminate deeply into the alveoli, allowing its diffusion through the blood-air barrier to several organs. Meanwhile, PM is a mix of solid or liquid particles suspended in the air. PM is deposited at different levels of the respiratory tract, depending on its size: Coarse particles (PM10) in upper airways and fine particles (PM2.5) can be accumulated in the lung parenchyma, inducing several respiratory diseases. Additionally to size, the composition of particulate matter has been associated with different toxicological outcomes on clinical, epidemiological, as well as in vivo and in vitro animal and human studies. PM can be constituted by organic, inorganic and biological compounds. All these compounds are capable of modifying several biological activities including alterations in cytokine production, coagulation factors balance, pulmonary function, respiratory symptoms, and cardiac function. It can also generate different modifications during its passage through the airways, like inflammatory cells recruitment, with the release of cytokines and reactive oxygen species (ROS). These inflammatory mediators can activate different pathways such as MAP-kinases, NF-B, and stat-1, or induce DNA adducts. All these alterations can mediate obstructive or restrictive respiratory diseases like asthma, COPD, pulmonary fibrosis and even, cancer. In 2013, outdoor air pollution was classified as Group 1 by IARC based on all research studies data about air pollution effects. Therefore it is important to understand how PM composition can generate several pulmonary pathologies.

Journal ArticleDOI
TL;DR: This review will focus on the activation of potential immunopathological pathways arising as a consequence of circulating as well as cell surface bound drug bearing ICs, risk factors that are intrinsic either to the therapeutic molecule or to the host that might predispose to IC-mediated effects, and review the recent literature on prevalence and intensity of established examples of type II and III hypersensitivity reactions that follow the administration of a biotherapeutic.
Abstract: Biological molecules are increasingly becoming a part of the therapeutics portfolio that has been either recently approved for marketing or those that are in the pipeline of several biotech and pharmaceutical companies. This is largely based on their ability to be highly specific relative to small molecules. However, by virtue of being a large protein, and having a complex structure with structural variability arising from production using recombinant gene technology in cell lines, such therapeutics run the risk of being recognized as foreign by a host immune system. In the context of immune-mediated adverse effects that have been documented to biological drugs thus far, including infusion reactions, and the evolving therapeutic platforms in the pipeline that engineer different functional modules in a biotherapeutic, it is critical to understand the interplay of the adaptive and innate immune responses, the pathophysiology of immunogenicity to biological drugs in instances where there have been immune-mediated adverse clinical sequelae and address technical approaches for their laboratory evaluation. The current paradigm in immunogenicity evaluation has a tiered approach to the detection and characterization of anti-drug antibodies (ADAs) elicited in vivo to a biotherapeutic; alongside with the structural, biophysical, and molecular information of the therapeutic, these analytical assessments form the core of the immunogenicity risk assessment. However, many of the immune-mediated adverse effects attributed to ADAs require the formation of a drug/ADA immune complex (IC) intermediate that can have a variety of downstream effects. This review will focus on the activation of potential immunopathological pathways arising as a consequence of circulating as well as cell surface bound drug bearing ICs, risk factors that are intrinsic either to the therapeutic molecule or to the host that might predispose to IC-mediated effects, and review the recent literature on prevalence and intensity of established examples of type II and III hypersensitivity reactions that follow the administration of a biotherapeutic. Additionally, we propose methods for the study of immune parameters specific to the biology of ICs that could be of use in conjunction with the detection of ADAs in circulation.

Journal ArticleDOI
TL;DR: Tertiary lymphoid structures offer a series of putative new targets that could be used to develop therapies aiming to increase the anti-tumor immune response.
Abstract: Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates that reflect lymphoid neogenesis occurring in tissues at sites of inflammation. They are detected in tumors where they orchestrate local and systemic anti-tumor responses. A correlation has been found between high densities of TLS and prolonged patient's survival in more than 10 different types of cancer. TLS can be regulated by the same set of chemokines and cytokines that orchestrate lymphoid organogenesis and by regulatory T cells. Thus, TLS offer a series of putative new targets that could be used to develop therapies aiming to increase the anti-tumor immune response.

Journal ArticleDOI
TL;DR: The mechanisms of NETosis, its antimicrobial action, and role in autoimmune diseases, as well as the relatively new field of NET-associated mitochondrial DNA are discussed.
Abstract: Recent data suggest that NETosis plays a crucial role in the innate immune response and disturbs the homeostasis of the immune system. NETosis is a form of neutrophil-specific cell death characterized by the release of large web-like structures referred to as neutrophil extracellular traps (NETs). NETs are composed of DNA strands associated with histones and decorated with about 20 different proteins including neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G, proteinase 3 (PR3), high mobility group protein B1 (HMGB1), and LL37. Reportedly, NETosis can be induced by several microbes, and particulate matter including sterile stimuli, via distinct cellular mechanisms. Meanwhile, suicidal NETosis and vital NETosis are controversial. As we enter the second decade of research on NETosis, we have partly understood NETs as double-edged swords of innate immunity. In this review we will discuss the mechanisms of NETosis, its antimicrobial action and role in autoimmune diseases, as well as the relatively new field of NET-associated mitochondrial DNA.

Journal ArticleDOI
TL;DR: The implications of defective clearance of apoptotic cells and NETs in the development of clinical manifestations in SLE are discussed and the subsequent generation of autoantibodies against nuclear antigens results in the perpetuation of inflammation and tissue damage in patients with SLE.
Abstract: Alterations of cell death pathways, including apoptosis and the neutrophil specific kind of death called NETosis, can represent a potential source of autoantigens. Defects in the clearance of apoptotic cells may be responsible for the initiation of systemic autoimmunity in several chronic inflammatory diseases, including systemic lupus erythematosus (SLE). Autoantigens are released mainly from secondary necrotic cells because of a defective clearance of apoptotic cells or an inefficient degradation of DNA-containing neutrophil extracellular traps (NETs). These modified autoantigens are presented by follicular dendritic cells to autoreactive B cells in germinal centers of secondary lymphoid organs. This results in the loss of self-tolerance and production of autoantibodies, a unifying feature of SLE. Immune complexes (IC) are formed from autoantibodies bound to uncleared cellular debris in blood or tissues. Clearance of IC by blood phagocytes, macrophages, and dendritic cells leads to proinflammatory cytokine secretion. In particular, plasmacytoid dendritic cells produce high amounts of interferon-α upon IC uptake, thereby contributing to the interferon signature of patients with SLE. The clearance of antinuclear IC via Fc-gamma receptors is considered a central event in amplifying inflammatory immune responses in SLE. Along with this, the accumulation of cell remnants represents an initiating event of the etiology, while the subsequent generation of autoantibodies against nuclear antigens (including NETs) results in the perpetuation of inflammation and tissue damage in patients with SLE. Here, we discuss the implications of defective clearance of apoptotic cells and NETs in the development of clinical manifestations in SLE.

Journal ArticleDOI
TL;DR: WES combined with analysis of PID-associated genes is a cost-effective approach to identify disease-causing mutations in CVID patients with severe phenotypes and was successful in 30% of the authors' cohort.
Abstract: Whole exome sequencing (WES) has proven an effective tool for the discovery of genetic defects in patients with primary immunodeficiencies (PIDs). However, success in dissecting the genetic etiology of common variable immunodeficiency (CVID) has been limited. We outline a practical framework for using WES to identify causative genetic defects in these subjects. Whole Exome Sequencing (WES) was performed on 50 subjects diagnosed with CVID who had at least one of the following criteria: early onset, autoimmune/inflammatory manifestations, low B lymphocytes, and/or familial history of hypogammaglobulinemia. Following alignment and variant calling, exomes were screened for mutations in 269 PID-causing genes. Variants were filtered based on the mode of inheritance and reported frequency in the general population. Each variant was assessed by study of familial segregation and computational predictions of deleteriousness. Out of 433 variations in PID-associated genes, we identified 17 probable disease-causing mutations in 15 patients (30%). These variations were rare or private and included mono-allelic mutations in NFKB1, STAT3, CTLA4, PIK3CD, and IKZF1, and bi-allelic mutations in LRBA and STXBP2. Forty-two other damaging variants were found but were not considered likely disease-causing based on mode of inheritance and/or patient phenotype. WES combined with analysis of PID-associated genes is a cost-effective approach to identify disease-causing mutations in CVID patients with severe phenotypes and was successful in 30% of our cohort. As targeted therapeutics are becoming the mainstay of treatment for non-infectious manifestations in CVID, this approach will improve management of patients with more severe phenotypes.

Journal ArticleDOI
TL;DR: The mechanisms by which NETs are produced in the context of viral infection are discussed and how this may contribute to both antiviral immunity and immunopathology are discussed.
Abstract: Neutrophils are the most numerous immune cells. Their importance as a first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils to produce extracellular traps (NETs) in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand disproportionate NET formation can cause local or systemic damage. Only recently was it recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.

Journal ArticleDOI
TL;DR: The contribution of ICOS in directing an effector T cell response, and ultimately disease outcome, against various bacterial, viral, and parasitic infections is addressed and potential therapies aiming to mitigate disease progression by modulating ICOS signaling are evaluated.
Abstract: Over the last 15 years, the inducible T cell co-stimulator (ICOS) has been implicated in a wide variety of immune outcomes, including the induction and regulation of Th1, Th2, and Th17 immunity. In addition to its role in directing effector T cell differentiation, ICOS has also been consistently linked with the induction of thymus-dependent Ab responses and the germinal center reaction. ICOS co-stimulation, therefore, appears to play a complex role in dictating the course of adaptive immunity. In this article, we summarize the initial characterization of ICOS and its relationship with the related co-stimulatory molecule CD28. We then address the contribution of ICOS in directing an effector T cell response, and ultimately disease outcome, against various bacterial, viral, and parasitic infections. Next, we assess ICOS in the context of TD Ab responses, connecting ICOS signaling to Tfh cell differentiation and its role in the germinal center reaction. Finally, we address the link between ICOS and human autoimmune disorders, and evaluate potential therapies aiming to mitigate disease progression by modulating ICOS signaling.

Journal ArticleDOI
TL;DR: An overview of the cyclic AMP axis and its role as a regulator of immune functions is provided and the clinical and translational relevance of interventions with these processes are discussed.
Abstract: Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes.

Journal ArticleDOI
TL;DR: In this article, the deficiency of early complement proteins from the Classical Pathway is strongly associated with development of systemic lupus erythematous (SLE) - mainly C1q deficiency (93%) and C4 deficiency (75%).
Abstract: The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the Classical, Alternative or Lectin Pathways. Biological functions such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, solubilization and clearance of immune complex and cell lysis are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in auto-immune diseases. Paradoxically, the deficiency of early complement proteins from the Classical Pathway is strongly associated with development of systemic lupus erythematous (SLE) - mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the Classical Pathway (C1q, C1r, C1s, C4, C2) proteins in SLE patients.

Journal ArticleDOI
TL;DR: It is proposed that future studies on human tissues, ex vivo, may allow us to confirm the role of GPR41 and GPR43 in humans, be it protective or causative, and it is pertinent that their role is fully elucidated.
Abstract: GPR41 and GPR43 are a pair of mammalian G-protein coupled receptors (GPCRs) expressed in human adipocytes, colon epithelial cells and peripheral blood mononuclear cells. These receptors are activated by short-chain fatty acids (SCFAs) such as acetate, propionate and butyrate– which are produced during dietary fiber fermentation by resident gut bacteria. This unique ligand specificity suggests that GPR41 and GPR43 may mediate the interaction between the human host and the gut microbiome. Indeed, studies on knockout mice implicate GPR41 and GPR43 in chronic inflammatory disorders such as obesity, colitis, asthma and arthritis. However, whether GPR41 and GPR43 are protective or causative is inconsistent between studies. This discrepancy may be due to differences in the disease models used, the inbred mouse strains or non-specific knockout effects. Here, we review the latest findings on GPR41 and GPR43, highlighting contradictory observations. With GPR41 and GPR43 being considered as drug targets, it is pertinent that their role is fully elucidated. We propose that future studies on human tissues, ex vivo, may allow us to confirm the role of GPR41 and GPR43 in humans, be it protective or causative.

Journal ArticleDOI
TL;DR: It is conceivable that understanding mechanisms of IL-6 from the perspective of gene regulation can better facilitate to determine the pathogenesis of the disease, providing more solid scientific basis for clinical treatment translation.
Abstract: Pro-inflammatory cytokines which are generated by immune system cells and mediate many kinds of immune responses are kinds of endogenous polypeptides. They are the effector of the autoimmune system. It is generally accepted that IL-4, IL-6, IL-9, IL-17 and TNF-α are pro-inflammatory cytokines, nonetheless, IL-6 becomes a protagonist among them since it predominately induces pro-inflammatory signaling and regulates massive cellular processes. It has been ascertained that IL-6 is associated with a large number of diseases with inflammatory background, such as autoimmune diseases, anemia of chronic diseases, angiogenesis acute-phase response, bone metabolism, cartilage metabolism and multiple cancers. Despite great progress in the relative field, the targeted regulation of IL-6 response for therapeutic benefits remains incompletely to be understood. It is, therefore, conceivable that understanding mechanisms of IL-6 from the perspective of gene regulation can better facilitate to determine the pathogenesis of the diseases, providing more solid scientific basis for clinical treatment. In this review we summarize the candidate genes that have been implicated in clinical target therapy from the perspective of gene transcription regulation.

Journal ArticleDOI
TL;DR: Examination of the evidence for PAD4 activation during NETosis is examined and experimental data is provided to suggest that protein citrullination is not a universal feature of NETs, which provides a framework to design specific inhibitors of these distinct biological processes in human disease.
Abstract: NETosis, an antimicrobial form of neutrophil cell death, is considered a primary source of citrullinated autoantigens in rheumatoid arthritis (RA) and immunogenic DNA in systemic lupus erythematosus (SLE). Activation of the citrullinating enzyme peptidylarginine deiminase type 4 (PAD4) is believed to be essential for neutrophil extracellular trap (NET) formation and NETosis. PAD4 is therefore viewed as a promising therapeutic target to inhibit the formation of NETs in both diseases. In this review, we examine the evidence for PAD4 activation during NETosis and provide experimental data to suggest that protein citrullination is not a universal feature of NETs. We delineate two distinct biological processes, leukotoxic hypercitrullination (LTH) and defective mitophagy, which have been erroneously classified as "NETosis." While these NETosis mimics share morphological similarities with NETosis (i.e., extracellular DNA release), they are biologically distinct. As such, these processes can be readily classified by their stimuli, activation of distinct biochemical pathways, the presence of hypercitrullination, and antimicrobial effector function. NETosis is an antimicrobial form of cell death that is NADPH oxidase-dependent and not associated with hypercitrullination. In contrast, LTH is NADPH oxidase-independent and not bactericidal. Rather, LTH represents a bacterial strategy to achieve immune evasion. It is triggered by pore-forming pathways and equivalent signals that cumulate in calcium-dependent hyperactivation of PADs, protein hypercitrullination, and neutrophil death. The generation of citrullinated autoantigens in RA is likely driven by LTH, but not NETosis. Mitochondrial DNA (mtDNA) expulsion, the result of a constitutive defect in mitophagy, represents a second NETosis mimic. In the presence of interferon-α and immune complexes, this process can generate highly interferogenic oxidized mtDNA, which has previously been mistaken for NETosis in SLE. Distinguishing NETosis from LTH and defective mitophagy is paramount to understanding the role of neutrophil damage in immunity and the pathogenesis of human diseases. This provides a framework to design specific inhibitors of these distinct biological processes in human disease.

Journal ArticleDOI
TL;DR: This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize the current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.
Abstract: Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.

Journal ArticleDOI
TL;DR: A significant association between RA and periodontitis is supported by the results of the systematic review and meta-analysis of studies comparing RA to healthy controls and this is not replicated when comparingRA to OA controls.
Abstract: Background: Rheumatoid arthritis (RA) and periodontitis are both chronic inflammatory disease which demonstrate similarities in terms of mechanism, histopathology and demography. An association between these conditions has been demonstrated previously but has been called into question more recently. Methods: The published databases MEDLINE, EMBASE and PsycINFO were searched using search terms related to RA and periodontitis. Articles were selected if they included data on the number of people with RA diagnosed with periodontitis (or periodontal disease parameters) compared to a control comparison group. Review articles, case reports, animal model studies, non-English language and articles with unavailable abstracts were excluded. Data was extracted, critically appraised using the Downs and Black tool and a random effect Mantel-Haenszel meta-analysis was performed. Results: 21 papers met the eligibility criteria and provided data for the meta-analysis; 17 studies (including a total of 153,492 participants) comparing RA to healthy controls and 4 (including a total of 1378 participants) comparing RA to osteoarthritis (OA). There was a significantly increased risk of periodontitis in people with RA compared to healthy controls (RR: 1.13; 95% CI: 1.04, 1.23; p=0.006; N: 153,277) with a significantly raised mean probing depth, risk of bleeding on probing (BOP) and absolute value of clinical attachment loss in those with rheumatoid arthritis. When comparing RA and OA, there was no significant difference in the prevalence of periodontitis, however the risk of BOP was greater in OA than RA. Conclusion: The significant association between RA and periodontitis is supported by the results of our systematic review and meta-analysis of studies comparing RA to healthy controls. In our meta-analysis, however, this is not replicated when comparing RA to OA controls.

Journal ArticleDOI
TL;DR: The dual role of NETs in the pathogenesis of VT and immunothrombosis is addressed, which has been proposed as a mechanism of pathologic micro- and macrovascular thrombotic in sepsis and autoimmune disease.
Abstract: Venous thrombosis (VT), a leading cause of morbidity and mortality worldwide, has recently been linked to neutrophil activation and release of neutrophil extracellular traps (NETs) via a process called NETosis. The use of various in vivo thrombosis models and genetically modified mice has more precisely defined the exact role of NETosis in the pathogenesis of VT. Translational large animal VT models and human studies have confirmed the presence of NETs in pathologic VT. Activation of neutrophils, with subsequent NETosis, has also been linked to acute infection. This innate immune response, while effective for bacterial clearance from the host by formation of an intravascular bactericidal "net," also triggers thrombosis. Intravascular thrombosis related to such innate immune mechanisms has been coined immunothrombosis. Dysregulated immunothrombosis has been proposed as a mechanism of pathologic micro- and macrovascular thrombosis in sepsis and autoimmune disease. In this focused review, we will address the dual role of NETs in the pathogenesis of VT and immunothrombosis.