scispace - formally typeset
Search or ask a question

Showing papers by "Cherry Ng published in 2016"


Journal ArticleDOI
TL;DR: The detection of five new fast radio bursts (FRBs) found in the 1.4 GHz High Time Resolution Universe high-latitude survey at Parkes, is presented in this article.
Abstract: The detection of five new fast radio bursts (FRBs) found in the 1.4-GHz High Time Resolution Universe high-latitude survey at Parkes, is presented. The rate implied is 7(-3)(+5) x 10(3) (95 per cent) FRBs sky(-1) d(-1) above a fluence of 0.13 Jy ms for an FRB of 0.128 ms duration to 1.5 Jy ms for 16 ms duration. One of these FRBs has a two-component profile, in which each component is similar to the known population of single component FRBs and the two components are separated by 2.4 +/- 0.4 ms. All the FRB components appear to be unresolved following deconvolution with a scattering tail and accounting for intrachannel smearing. The two-component burst, FRB 121002, also has the highest dispersion measure (1629 pc cm(-3)) of any FRB to-date. Many of the proposed models to explain FRBs use a single high-energy event involving compact objects (such as neutron-star mergers) and therefore cannot easily explain a two-component FRB. Models that are based on extreme versions of flaring, pulsing, or orbital events, however, could produce multiple component profiles. The compatibility of these models and the FRB rate implied by these detections is discussed.

318 citations


Journal ArticleDOI
TL;DR: In this article, Chandra X-ray observations of a pulsar and its pulsar wind nebula (PWN) were used to estimate the physical parameters of the observed outflows and compare the J1509-5850 PWN with other supersonically moving pulsars.
Abstract: PSR J1509-5850 is a middle-aged pulsar with the period P ~ 89 ms, spin-down power Edot = 5.1 x 10^35 erg/s, at a distance of about 3.8 kpc. We report on deep Chandra X-ray Observatory observations of this pulsar and its pulsar wind nebula (PWN). In addition to the previously detected tail extending up to 7' southwest from the pulsar (the southern outflow), the deep images reveal a similarly long, faint diffuse emission stretched toward the north (the northern outflow) and the fine structure of the compact nebula (CN) in the pulsar vicinity. The CN is resolved into two lateral tails and one axial tail pointing southwest (a morphology remarkably similar to that of the Geminga PWN), which supports the assumption that the pulsar moves towards the northeast. The luminosities of the southern and northern outflows are about 1 x 10^33 and 4 x 10^32 erg/s, respectively. The spectra extracted from four regions of the southern outflow do not show any softening with increasing distance from the pulsar. The lack of synchrotron cooling suggests a high flow speed or in-situ acceleration of particles. The spectra extracted from two regions of the northern outflow show a hint of softening with distance from the pulsar, which may indicate slower particle propagation. We speculate that the northern outflow is associated with particle leakage from the bow shock apex into the ISM, while the southern outflow represents the tail of the shocked pulsar wind behind the moving pulsar. We estimate the physical parameters of the observed outflows and compare the J1509-5850 PWN with PWNe of other supersonically moving pulsars.

41 citations


Journal ArticleDOI
TL;DR: In this paper, Chandra X-ray Observatory (CXO) observations of the pulsar wind nebula (PWN) associated with PSR B0355+54 (eight observations with a 395 ks total exposure, performed over an 8 month period).
Abstract: We report on Chandra X-ray Observatory (CXO) observations of the pulsar wind nebula (PWN) associated with PSR B0355+54 (eight observations with a 395 ks total exposure, performed over an 8 month period). We investigated the spatial and spectral properties of the emission coincident with the pulsar, compact nebula (CN), and extended tail. We find that the CN morphology can be interpreted in a way that suggests a small angle between the pulsar spin axis and our line-of-sight, as inferred from the radio data. On larger scales, emission from the 7' (2 pc) tail is clearly seen. We also found hints of two faint extensions nearly orthogonal to the direction of the pulsar's proper motion. The spectrum extracted at the pulsar position can be described with an absorbed power-law + blackbody model. The nonthermal component can be attributed to magnetospheric emission, while the thermal component can be attributed to emission from either a hot spot (e.g., a polar cap) or the entire neutron star surface. Surprisingly, the spectrum of the tail shows only a slight hint of cooling with increasing distance from the pulsar. This implies either a low magnetic field with fast flow speed, or particle re-acceleration within the tail. We estimate physical properties of the PWN and compare the morphologies of the CN and the extended tail with those of other bow shock PWNe observed with long CXO exposures.

41 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present updated radio timing observations along with new and archival optical data which show that PSR J1024-0719 is most likely in a long-period (2-20 kyr) binary system with a low-mass (≈0.4 M⊙), low-metallicity (z ≈ -0.9 dex) main-sequence star.
Abstract: PSR J1024–0719 is a millisecond pulsar that was long thought to be isolated. However, puzzling results concerning its velocity, distance, and low rotational period derivative have led to a reexamination of its properties. We present updated radio timing observations along with new and archival optical data which show that PSR J1024–0719 is most likely in a long-period (2–20 kyr) binary system with a low-mass (≈0.4 M⊙), low-metallicity (z ≈ -0.9 dex) main-sequence star. Such a system can explain most of the anomalous properties of this pulsar. We suggest that this system formed through a dynamical exchange in a globular cluster that ejected it into a halo orbit, which is consistent with the low observed metallicity for the stellar companion. Further astrometric and radio timing observations such as measurement of the third period derivative could strongly constrain the range of orbital parameters.

37 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a radio polarization study of the "snail" PWN inside the supernova remnant G327.1−1.1 using the Australia Telescope Compact Array.
Abstract: Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the "Snail" PWN inside the supernova remnant G327.1−1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulated PWN with a turbulence scale of about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50%–75% provides the best match to observations. This implies substantial mixing between the SN ejecta and pulsar wind material in this system.

33 citations


Journal ArticleDOI
TL;DR: In this paper, Chandra X-ray observations of a pulsar and its pulsar wind nebula (PWN) were used to estimate the physical parameters of the observed outflows and compare the J1509-5850 PWN with other supersonically moving pulsars.
Abstract: PSR J1509-5850 is a middle-aged pulsar with the period P ~ 89 ms, spin-down power Edot = 5.1 x 10^35 erg/s, at a distance of about 3.8 kpc. We report on deep Chandra X-ray Observatory observations of this pulsar and its pulsar wind nebula (PWN). In addition to the previously detected tail extending up to 7' southwest from the pulsar (the southern outflow), the deep images reveal a similarly long, faint diffuse emission stretched toward the north (the northern outflow) and the fine structure of the compact nebula (CN) in the pulsar vicinity. The CN is resolved into two lateral tails and one axial tail pointing southwest (a morphology remarkably similar to that of the Geminga PWN), which supports the assumption that the pulsar moves towards the northeast. The luminosities of the southern and northern outflows are about 1 x 10^33 and 4 x 10^32 erg/s, respectively. The spectra extracted from four regions of the southern outflow do not show any softening with increasing distance from the pulsar. The lack of synchrotron cooling suggests a high flow speed or in-situ acceleration of particles. The spectra extracted from two regions of the northern outflow show a hint of softening with distance from the pulsar, which may indicate slower particle propagation. We speculate that the northern outflow is associated with particle leakage from the bow shock apex into the ISM, while the southern outflow represents the tail of the shocked pulsar wind behind the moving pulsar. We estimate the physical parameters of the observed outflows and compare the J1509-5850 PWN with PWNe of other supersonically moving pulsars.

28 citations


Journal ArticleDOI
TL;DR: In this article, Chandra X-ray Observatory (CXO) observations of the pulsar wind nebula (PWN) associated with PSR B0355+54 (eight observations with a 395 ks total exposure, performed over an 8 month period).
Abstract: We report on Chandra X-ray Observatory (CXO) observations of the pulsar wind nebula (PWN) associated with PSR B0355+54 (eight observations with a 395 ks total exposure, performed over an 8 month period). We investigated the spatial and spectral properties of the emission coincident with the pulsar, compact nebula (CN), and extended tail. We find that the CN morphology can be interpreted in a way that suggests a small angle between the pulsar spin axis and our line-of-sight, as inferred from the radio data. On larger scales, emission from the 7' (2 pc) tail is clearly seen. We also found hints of two faint extensions nearly orthogonal to the direction of the pulsar's proper motion. The spectrum extracted at the pulsar position can be described with an absorbed power-law + blackbody model. The nonthermal component can be attributed to magnetospheric emission, while the thermal component can be attributed to emission from either a hot spot (e.g., a polar cap) or the entire neutron star surface. Surprisingly, the spectrum of the tail shows only a slight hint of cooling with increasing distance from the pulsar. This implies either a low magnetic field with fast flow speed, or particle re-acceleration within the tail. We estimate physical properties of the PWN and compare the morphologies of the CN and the extended tail with those of other bow shock PWNe observed with long CXO exposures.

26 citations


Journal ArticleDOI
TL;DR: In this paper, Chandra observations of the Geminga pulsar wind nebula (PWN) have been reported, showing that the luminous, bent polar outflows in the axial tail of the pulsar can be represented by a crushed torus.
Abstract: We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $\approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $\approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {\rm pc})$. The photon indices of the power law spectra of the lateral tails, $\Gamma \approx 1$, are significantly harder than those of the pulsar ($\Gamma \approx 1.5$) and the axial tail ($\Gamma \approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.

16 citations


Journal ArticleDOI
TL;DR: In this article, the authors present updated radio timing observations along with new and archival optical data that show PSR J1024$-$0719 is most likely in a long period (2$-$20 kyr) binary system with a low-mass ($\approx 0.4\,M_\odot$) low-metallicity ($Z \approx -0.9\,$ dex) main sequence star.
Abstract: PSR J1024$-$0719 is a millisecond pulsar that was long thought to be isolated. However, puzzling results concerning its velocity, distance, and low rotational period derivative have led to reexamination of its properties. We present updated radio timing observations along with new and archival optical data that show PSR J1024$-$0719 is most likely in a long period (2$-$20 kyr) binary system with a low-mass ($\approx 0.4\,M_\odot$) low-metallicity ($Z \approx -0.9\,$ dex) main sequence star. Such a system can explain most of the anomalous properties of this pulsar. We suggest that this system formed through a dynamical exchange in a globular cluster that ejected it into a halo orbit, consistent with the low observed metallicity for the stellar companion. Further astrometric and radio timing observations such as measurement of the third period derivative could strongly constrain the range of orbital parameters.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a radio polarization study of the "snail" PWN inside the supernova remnant G327.1-1.1 using the Australia Telescope Compact Array.
Abstract: Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the "Snail" PWN inside the supernova remnant G327.1-1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulated PWN with a turbulence scale of about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50--75% provides the best match to observations. This implies substantial mixing between the SN ejecta and pulsar wind material in this system.