scispace - formally typeset
Search or ask a question

Showing papers by "David A. Hume published in 2000"


Journal ArticleDOI
01 Nov 2000-Bone
TL;DR: The view that TRAP, like several other hydrolases, is synthesized as a relatively inactive proen enzyme, and cleavage is the physiological mechanism of proenzyme activation in osteoclasts is put forth.

210 citations


Journal ArticleDOI
01 Oct 2000-Blood
TL;DR: This overview summarizes the recent evidence that transcriptional regulation at the level of individual cells is best described in terms of the regulation of the probability of transcription rather than the rate.

200 citations


Journal ArticleDOI
TL;DR: Measurements of the bone formation rate suggest that the animals compensate for the increased resorption by increasing bone synthesis, which partly ameliorates the phenotype, and provides evidence that inclusion of an irrelevant enhancer does not necessarily override a tissue‐specific promoter.
Abstract: Tartrate-resistant acid phosphatase (TRAP) is a secreted product of osteoclasts and a lysosomal hydrolase of some tissue macrophages. To determine whether TRAP expression is rate-limiting in bone resorption, we overexpressed TRAP in transgenic mice by introducing additional copies of the TRAP gene that contained the SV40 enhancer. In multiple independent mouse lines, the transgene gave a copy number-dependent increase in TRAP mRNA levels and TRAP activity in osteoclasts, macrophages, serum, and other sites of normal low-level expression (notably, liver parenchymal cells, kidney mesangial cells, and pancreatic secretory acinar cells). Transgenic mice had decreased trabecular bone consistent with mild osteoporosis. Measurements of the bone formation rate suggest that the animals compensate for the increased resorption by increasing bone synthesis, which partly ameliorates the phenotype. These mice provide evidence that inclusion of an irrelevant enhancer does not necessarily override a tissue-specific promoter.

177 citations


Journal ArticleDOI
TL;DR: Yolk sac-derived phagocytes differ in differentiation pathway and marker gene expression from macrophages produced via classic hematopoietic progenitors in the liver, raising the question of whether primitive phagocyte persist into the adulthood.

151 citations


Journal ArticleDOI
30 May 2000-Gene
TL;DR: Observations strongly suggest that the cloned cDNA sequences represent a second group of plant PAPs with properties more similar to the mammalian enzymes than to the high molecular weight plant enzymes.

146 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the phosphorothioate backbone has both enhancing and inhibitory effects on macrophage responses to CpG DNA, whereas nonstimulatory phosphodiester ODN had no such effect.
Abstract: Macrophages respond to unmethylated CpG motifs present in nonmammalian DNA. Stabilized phosphorothioate-modified oligodeoxynucleotides (PS-ODN) containing CpG motifs form the basis of immunotherapeutic agents. In this study, we show that PS-ODN do not perfectly mimic native DNA in activation of macrophages. CpG-containing PS-ODN were active at 10- to 100-fold lower concentrations than corresponding phosphodiester ODN in maintenance of cell viability in the absence of CSF-1, in induction of NO production, and in activation of the IL-12 promoter. These enhancing effects are attributable to both increased stability and rate of uptake of the PS-ODN. By contrast, PS-ODN were almost inactive in down-modulation of the CSF-1R from primary macrophages and activation of the HIV-1 LTR. Delayed or poor activation of signaling components may contribute to this, as PS-ODN were slower and less effective at inducing phosphorylation of the extracellular signal-related kinases 1 and 2. In addition, at high concentrations, non-CpG PS-ODN specifically inhibited responses to CpG DNA, whereas nonstimulatory phosphodiester ODN had no such effect. Although nonstimulatory PS-ODN caused some inhibition of ODN uptake, this did not adequately explain the levels of inhibition of activity. The results demonstrate that the phosphorothioate backbone has both enhancing and inhibitory effects on macrophage responses to CpG DNA.

134 citations


Journal ArticleDOI
TL;DR: It is proposed that the primary pool of biologically active TNF-alpha in activated macrophages is held in the Golgi complex and that the cytokine is recruited directly from this intracellular pool for release in response to tumor cells or pathogens.
Abstract: Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine secreted by activated macrophages. In this study, we examined the intracellular distribution and trafficking of TNF-alpha. Immunofluorescence and immunogold localization demonstrated that in lipopolysaccharide (LPS)-stimulated RAW264 macrophages, the greatest concentration of TNF-alpha is found in the perinuclear Golgi complex. Staining of the Golgi complex appeared 20 min after activation of cells and persisted for 2-12 h, and TNF-alpha appeared on the cell surface only transiently during this time. The rate of disappearance of Golgi staining correlated with the release of the cleaved, mature TNF-alpha into the medium. Pulse chase labeling and subcellular fractionation studies indicated that both 26-kDa and 17-kDa forms of TNF-alpha may be present at the level of the Golgi complex. Post-Golgi trafficking of TNF-alpha was modulated by agents that disrupt the cytoskeleton. Interferon-gamma (IFN-gamma), which primes macrophages for TNF-alpha-dependent cellular cytotoxicity, potentiated the effect of LPS by sustaining enhanced intracellular pools of TNF-alpha and also promoted redistribution of TNF-alpha into post-Golgi vesicular compartments. We propose that the primary pool of biologically active TNF-alpha in activated macrophages is held in the Golgi complex and that the cytokine is recruited directly from this intracellular pool for release in response to tumor cells or pathogens.

122 citations


Journal ArticleDOI
TL;DR: It is demonstrated that while a constitutively active TLR4 homodimer can induce the production of pro-inflammatory cytokines, homodimers of TLR2 and TLR6 cannot, indicating that these TLRs require partners to productively signal.
Abstract: Toll-like receptors (TLRs) mediate detection of a broad range of pathogens and pathogen-derived products including LPS, peptidoglycan, bacterial lipopeptides, and lipoteichoic acid. Recent evidence indicates that the broad specificity of TLRs may be a consequence of the interactions between different TLRs. In this report, we demonstrate that while a constitutively active TLR4 homodimer can induce the production of pro-inflammatory cytokines, homodimers of TLR2 and TLR6 cannot. However, when co-expressed in the same cell, constitutively active TLR2 and TLR6 strongly induce cytokine production, indicating that these TLRs require partners to productively signal. Since TLR4 signals as a homodimer, while TLR2 and TLR6 do not, it is clear that, despite the conservation of their cytoplasmic signaling domains, the mechanisms by which they initiate signaling are different. We have localized the region of TLR4 that mediates its ability to signal as a homodimer to the membrane-proximal half of the cytoplasmic tail of the receptor.

85 citations


Journal ArticleDOI
TL;DR: Constitutive ets-2 activity may contribute to the pathology of me-v mice by increasing expression of genes like the Bcl-x gene that promote macrophage survival, which is a target for phosphatidylinositol 3-kinase–Akt–JNK action.
Abstract: The transcription factor ets-2 was phosphorylated at residue threonine 72 in a colony-stimulating factor 1 (CSF-1)- and mitogen-activated protein kinase-independent manner in macrophages isolated from motheaten-viable (me-v) mice. The CSF-1 and ets-2 target genes coding for Bcl-x, urokinase plasminogen activator, and scavenger receptor were also expressed at high levels independent of CSF-1 addition to me-v cells. Akt (protein kinase B) was constitutively active in me-v macrophages, and an Akt immunoprecipitate catalyzed phosphorylation of ets-2 at threonine 72. The p54 isoform of c-jun N-terminal kinase–stress-activated kinase (JNK- SAPK) coimmunoprecipitated with Akt from me-v macrophages, and treatment of me-v cells with the specific phosphatidylinositol 3-kinase inhibitor LY294002 decreased cell survival, Akt and JNK kinase activities, ets-2 phosphorylation, and Bcl-x mRNA expression. Therefore, ets-2 is a target for phosphatidylinositol 3-kinase–Akt–JNK action, and the JNK p54 isoform is an ets-2 kinase in macrophages. Constitutive ets-2 activity may contribute to the pathology of me-v mice by increasing expression of genes like the Bcl-x gene that promote macrophage survival.

79 citations


Journal ArticleDOI
TL;DR: In this article, a functional Ras-dependent Ets-binding site (EBS) was located downstream from the proximal VDRE and was critical to 1,25(OH)2D3-mediated induction.

76 citations


Journal ArticleDOI
19 Sep 2000-Gene
TL;DR: Homology models indicate that both bacterial proteins appear to be similar to mammalian purple acid phosphatases in the immediate vicinity of the active site, and it is likely that these enzymes act as Fenton-type catalysts in order to prevent damage caused by reactive oxygen species generated by invaded host cells or by the light-harvesting complex.

Book ChapterDOI
TL;DR: The macrophage response to DNA generates cytokines favouring the development of Th1-type immunity, and active oligonucleotides now show promise as Th 1-promoting adjuvants and as allergy treatments.
Abstract: Macrophage/dendritic cells and B cells remain the only cell types where direct responses to CpG DNA are well established. The role of macrophages in vivo in DNA clearance and the potent cytokine induction in macrophages and dendritic cells places them in the central role in the in vivo response to foreign DNA. Although responses to DNA are unlikely to evolve and be retained if they are not significant in the immune response to infection, the relative contributions of DNA and other stimulators of the innate immune recognition of foreign organisms is difficult to assess. Although CpG DNA and LPS have similar actions, significant differences are emerging that make the use of DNA as a therapeutic immunostimulatory molecule feasible. The macrophage response to DNA generates cytokines favouring the development of Th1-type immunity, and active oligonucleotides now show promise as Th1-promoting adjuvants and as allergy treatments.

Journal ArticleDOI
TL;DR: Results provide evidence that the pathology of CF relates to abnormal regulation of the immune system and localization of S100A8 mRNA and protein in the lung indicate that it is a marker for neutrophil accumulation.
Abstract: The major cause of death in cystic fibrosis (CF) is chronic lung disease associated with persistent infection by the bacterium, Pseudomonas aeruginosa. S100A8, an S-100 calcium-binding protein with chemotactic activity, is constitutively expressed in the lungs and serum of CF patients. Levels of S100A8 mRNA were found to be three to four times higher in the lungs of mice carrying the G551D mutation in CF transmembrane conductance regulator compared with littermate controls. Intravenous injection of bacterial LPS induced S100A8 mRNA in the lung to a greater extent in G551D mice than in wild-type littermates. Localization of S100A8 mRNA and protein in the lung indicate that it is a marker for neutrophil accumulation. Bone marrow-derived macrophages from G551D mice were shown to also exhibit hypersensitivity to LPS, measured by induction of TNF-α. These results provide evidence that the pathology of CF relates to abnormal regulation of the immune system.

Journal ArticleDOI
22 Dec 2000-Cell
TL;DR: It is argued that the effects of null mutations in mice always need to be interpreted with caution, and it remains possible that neither of these molecules is the specific CpG-DNA receptor.

Journal ArticleDOI
TL;DR: Data are revealed that heat shock of murine macrophages concurrent with lipopolysaccharide (LPS) treatment stimulated changes in guanine methylation sensitivity at ‐898/9, at a putative partial heat shock element (HSE) and at a site bordering an E‐box, within the iNOS gene enhancer, suggesting inducible occupation by transcription factors at these regions.
Abstract: There is considerable interest in determining the conditions leading to enhanced inducible nitric oxide synthase (iNOS) gene expression and nitric oxide (NO) biosynthesis. Using in vivo footprinting, we demonstrate that heat shock of murine macrophages concurrent with lipopolysaccharide (LPS) treatment stimulated changes in guanine methylation sensitivity at ?898/9, at a putative partial heat shock element (HSE) and at -893/4, a site bordering an E-box, within the iNOS gene enhancer, suggesting inducible occupation by transcription factors at these regions. LPS treatment accompanied by heat shock provoked increased iNOS gene transcription, increased levels of iNOS protein, and increased production of NO compared with LPS treatment alone. Electrophoretic mobility shift analysis revealed low constitutive levels of specific binding to an E-box and a partial HSE within the iNOS enhancer. Binding to the E-box was increased by LPS treatment or by heat shock, achieving a greater increase by a combination of both treatments. The proteins occupying this site were identified as belonging to the USF family of transcription factors. Heat shock or LPS increased binding to the HSE, and the factor responsible for this interaction was identified as heeat shock factor-1 (HSF-1). Mutations at the HSE revealed the importance of HSF-1 in the induction of iNOS by LPS. Thus, our data reveal two novel regulatory sites in the murine iNOS gene, one of which is implicated in enhancing iNOS expression via LPS stimulation, and provide the first evidence that heat shock enhances transcription of the iNOS gene. These results could have implications in the host response mechanism to fever-associated gram-negative infection.

Journal ArticleDOI
TL;DR: It is demonstrated that the murine macrophage cell line RAW264 responds to CSF-1 with inducible phosphorylation of cytoplasmic proteins on tyrosine residues but fails to induce transcription of uPA, indicating that maintenance of elevated uPA transcription by CSf-1 requires new receptors emerging continuously on the cell surface.
Abstract: Macrophage colony-stimulating factor (CSF-1) binds to a receptor (CSF-1R) encoded by the c-fms proto-oncogene and activates transcription of the urokinase plasminogen activator (uPA) gene in murine bone-marrow-derived macrophages. This article demonstrates that the murine macrophage cell line RAW264 responds to CSF-1 with inducible phosphorylation of cytoplasmic proteins on tyrosine residues but fails to induce transcription of uPA. The defect was correlated with a selective failure to maintain CSF-1Rs on the cell surface, whereas all RAW264 cells contained abundant CSF-1Rs within the presumptive Golgi/endoplasmic reticulum compartment. Transfection with a CSF-1R expression plasmid permitted CSF-1-dependent activation of the signalling pathway targeting an Ets/AP1 (activator protein 1) element in the uPA promoter that has been shown previously to be a target of oncogenic ras and protein kinase C pathways. Mutation of the expressed CSF-1R at either Y807 or Y559, sites of receptor tyrosine phosphorylation implicated in signal transduction, reduced but did not abolish uPA promoter activation by CSF-1. Activation by mutant CSF-1R plasmids was additive; there was no evidence of mutual complementation. The results indicate that maintenance of elevated uPA transcription by CSF-1 requires new receptors emerging continuously on the cell surface. Parallel, partly redundant, signalling pathways arising from phosphorylated tyrosines on the CSF-1R activate multiple cis-acting elements on the complex uPA promoter.

Journal ArticleDOI
TL;DR: It is demonstrated that the murine macrophage cell line RAW264 responds to CSF-1 with inducible phosphorylation of cytoplasmic proteins on tyrosine residues but fails to induce transcription of uPA, indicating that maintenance of elevated uPA transcription by CSf-1 requires new receptors emerging continuously on the cell surface.
Abstract: Macrophage colony-stimulating factor (CSF-1) binds to a receptor (CSF-1R) encoded by the c-fms proto-oncogene and activates transcription of the urokinase plasminogen activator (uPA) gene in murine bone-marrow-derived macrophages. This article demonstrates that the murine macrophage cell line RAW264 responds to CSF-1 with inducible phosphorylation of cytoplasmic proteins on tyrosine residues but fails to induce transcription of uPA. The defect was correlated with a selective failure to maintain CSF-1Rs on the cell surface, whereas all RAW264 cells contained abundant CSF-1Rs within the presumptive Golgi/endoplasmic reticulum compartment. Transfection with a CSF-1R expression plasmid permitted CSF-1-dependent activation of the signalling pathway targeting an Ets/AP1 (activator protein 1) element in the uPA promoter that has been shown previously to be a target of oncogenic ras and protein kinase C pathways. Mutation of the expressed CSF-1R at either Y807 or Y559, sites of receptor tyrosine phosphorylation implicated in signal transduction, reduced but did not abolish uPA promoter activation by CSF-1. Activation by mutant CSF-1R plasmids was additive; there was no evidence of mutual complementation. The results indicate that maintenance of elevated uPA transcription by CSF-1 requires new receptors emerging continuously on the cell surface. Parallel, partly redundant, signalling pathways arising from phosphorylated tyrosines on the CSF-1R activate multiple cis-acting elements on the complex uPA promoter.