scispace - formally typeset
Search or ask a question

Showing papers by "David T. Breault published in 2019"


Journal ArticleDOI
TL;DR: The extended coculture of living human intestinal epithelium with stable communities of aerobic and anaerobic human gut microbiota is shown, using a microfluidic intestine-on-a-chip that permits the control and real-time assessment of physiologically relevant oxygen gradients.
Abstract: The diverse bacterial populations that comprise the commensal microbiome of the human intestine play a central role in health and disease. A method that sustains complex microbial communities in direct contact with living human intestinal cells and their overlying mucus layer in vitro would thus enable the investigation of host-microbiome interactions. Here, we show the extended coculture of living human intestinal epithelium with stable communities of aerobic and anaerobic human gut microbiota, using a microfluidic intestine-on-a-chip that permits the control and real-time assessment of physiologically relevant oxygen gradients. When compared to aerobic coculture conditions, the establishment of a transluminal hypoxia gradient in the chip increased intestinal barrier function and sustained a physiologically relevant level of microbial diversity, consisting of over 200 unique operational taxonomic units from 11 different genera and an abundance of obligate anaerobic bacteria, with ratios of Firmicutes and Bacteroidetes similar to those observed in human faeces. The intestine-on-a-chip may serve as a discovery tool for the development of microbiome-related therapeutics, probiotics and nutraceuticals.

428 citations


Journal ArticleDOI
TL;DR: The identification of specific human microbiome metabolites modulating EHEC pathogenesis are identified and they contribute to species-specific tolerance, which lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.
Abstract: Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic Escherichia coli (EHEC) infection, whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities. We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites—4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid—that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity. Organ-on-chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.

96 citations


Journal ArticleDOI
TL;DR: It is demonstrated that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion, and a Wnt/β-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of z NRF3 is discovered.
Abstract: Spatiotemporal control of Wnt signaling is essential for the development and homeostasis of many tissues. The transmembrane E3 ubiquitin ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger protein 43) antagonize Wnt signaling by promoting degradation of frizzled receptors. ZNRF3 and RNF43 are frequently inactivated in human cancer, but the molecular and therapeutic implications remain unclear. Here, we demonstrate that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion. Furthermore, we discovered a Wnt/β-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of ZNRF3. Unlike β-catenin gain-of-function models, which induce high Wnt/β-catenin activation and expansion of the peripheral cortex, ZNRF3 loss triggers activation of moderate-level Wnt/β-catenin signaling that drives proliferative expansion of only the histologically and functionally distinct inner cortex. Genetically reducing β-catenin dosage significantly reverses the ZNRF3-deficient phenotype. Thus, homeostatic maintenance of the adrenal cortex is dependent on varying levels of Wnt/β-catenin activation, which is regulated by ZNRF3.

61 citations


Journal ArticleDOI
TL;DR: In vivo and pathological relevance of TcdA–sGAGs interactions are demonstrated, and a potential therapeutic approach of protecting colonic tissues by blocking these interactions is revealed.
Abstract: Clostridium difficile toxin A (TcdA) is a major exotoxin contributing to disruption of the colonic epithelium during C. difficile infection. TcdA contains a carbohydrate-binding combined repetitive oligopeptides (CROPs) domain that mediates its attachment to cell surfaces, but recent data suggest the existence of CROPs-independent receptors. Here, we carried out genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated screens using a truncated TcdA lacking the CROPs, and identified sulfated glycosaminoglycans (sGAGs) and low-density lipoprotein receptor (LDLR) as host factors contributing to binding and entry of TcdA. TcdA recognizes the sulfation group in sGAGs. Blocking sulfation and glycosaminoglycan synthesis reduces TcdA binding and entry into cells. Binding of TcdA to the colonic epithelium can be reduced by surfen, a small molecule that masks sGAGs, by GM-1111, a sulfated heparan sulfate analogue, and by sulfated cyclodextrin, a sulfated small molecule. Cells lacking LDLR also show reduced sensitivity to TcdA, although binding between LDLR and TcdA are not detected, suggesting that LDLR may facilitate endocytosis of TcdA. Finally, GM-1111 reduces TcdA-induced fluid accumulation and tissue damage in the colon in a mouse model in which TcdA is injected into the caecum. These data demonstrate in vivo and pathological relevance of TcdA-sGAGs interactions, and reveal a potential therapeutic approach of protecting colonic tissues by blocking these interactions.

58 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Gq signaling is sufficient for adrenocortical aldosterone production and implicate this pathway in the determination of zone-specific steroid production within the adrenal cortex.
Abstract: The mineralocorticoid aldosterone is produced in the adrenal zona glomerulosa (ZG) under the control of the renin-angiotensin II (AngII) system. Primary aldosteronism (PA) results from renin-independent production of aldosterone and is a common cause of hypertension. PA is caused by dysregulated localization of the enzyme aldosterone synthase (Cyp11b2), which is normally restricted to the ZG. Cyp11b2 transcription and aldosterone production are predominantly regulated by AngII activation of the Gq signaling pathway. Here, we report the generation of transgenic mice with Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) specifically in the adrenal cortex. We show that adrenal-wide ligand activation of Gq DREADD receptors triggered disorganization of adrenal functional zonation, with induction of Cyp11b2 in glucocorticoid-producing zona fasciculata cells. This result was consistent with increased renin-independent aldosterone production and hypertension. All parameters were reversible following termination of DREADD-mediated Gq signaling. These findings demonstrate that Gq signaling is sufficient for adrenocortical aldosterone production and implicate this pathway in the determination of zone-specific steroid production within the adrenal cortex. This transgenic mouse also provides an inducible and reversible model of hyperaldosteronism to investigate PA therapeutics and the mechanisms leading to the damaging effects of aldosterone on the cardiovascular system.

13 citations


Journal ArticleDOI
TL;DR: This study shows that a zona glomerulosa–specific channel defect can produce mild autonomous hyperaldosteronism sufficient to cause chronic blood pressure elevation.
Abstract: The renin-angiotensin system tightly controls aldosterone synthesis. Dysregulation is evident in hypertension (primary aldosteronism), low renin, and resistant hypertension) but also can exist in n...

12 citations


Posted ContentDOI
20 Aug 2019-bioRxiv
TL;DR: This study is the first to demonstrate production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real-time non-invasively and may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases.
Abstract: Background & Aims The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology. Methods A human colon-on-a-chip (Colon Chip) microfluidic device lined by primary patient-derived colonic epithelial cells was used to recapitulate mucus bilayer formation, and to visualize mucus accumulation in living cultures non-invasively. Results The Colon Chip supports spontaneous goblet cell differentiation and accumulation of a mucus bilayer with impenetrable and penetrable layers, and a thickness similar to that observed in human colon, while maintaining a subpopulation of proliferative epithelial cells. Live imaging of the mucus layer formation on-chip revealed that stimulation of the colonic epithelium with prostaglandin E2, which is elevated during inflammation, causes rapid mucus volume expansion via an NKCC1 ion channel-dependent increase in its hydration state, but no increase in de novo mucus secretion. Conclusion This study is the first to demonstrate production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real-time non-invasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.

12 citations


Journal ArticleDOI
TL;DR: This study investigates the expression pattern of a green fluorescent protein (GFP) reporter for mTert promoter activity (mTert-GFP), which may play a role in immune cell regulated repair in endometrial regeneration following a menses-like event.
Abstract: The regenerative capacity of the endometrium has been attributed to resident stem/progenitor cells. A number of stem/progenitor markers have been reported for human endometrial stem/progenitor cells; however, the lack of convenient markers in the mouse has made experimental investigation into endometrial regeneration difficult. We recently identified endometrial epithelial, endothelial, and immune cells, which express a reporter for the stem/progenitor marker, mouse telomerase reverse transcriptase (mTert). In this study, we investigate the expression pattern of a green fluorescent protein (GFP) reporter for mTert promoter activity (mTert-GFP) in endometrial regeneration following a menses-like event. mTert-GFP expression marks subepithelial populations of T cells and mature macrophages and may play a role in immune cell regulated repair. Clusters of mTert-GFP-positive epithelial cells were identified close to areas of reepithelialization and possibly highlight a role for mTert in the repair and regeneration of the endometrial epithelium.

8 citations


Journal ArticleDOI
TL;DR: Gene analysis showed increased expression of adrenal genes in female SCC-KO mice involved in cell cycle control, cell adhesion-extracellular matrix interaction and ligand receptor activity that could promote steroid production.
Abstract: The circadian glucocorticoid (GC) rhythm is dependent on a molecular clock in the suprachiasmatic nucleus (SCN) and an adrenal clock that is synchronized by the SCN. To determine whether the adrenal clock modulates GC responses to stress, experiments used female and male Cyp11A1Cre/+::Bmal1Fl/Fl knockout [side-chain cleavage (SCC)-KO] mice, in which the core clock gene, Bmal1, is deleted in all steroidogenic tissues, including the adrenal cortex. Following restraint stress, female and male SCC-KO mice demonstrate augmented plasma corticosterone but not plasma ACTH. In contrast, following submaximal scruff stress, plasma corticosterone was elevated only in female SCC-KO mice. Adrenal sensitivity to ACTH was measured in vitro using acutely dispersed adrenocortical cells. Maximal corticosterone responses to ACTH were elevated in cells from female KO mice without affecting the EC50 response. Neither the maximum nor the EC50 response to ACTH was affected in male cells, indicating that female SCC-KO mice show a stronger adrenal phenotype. Parallel experiments were conducted using female Cyp11B2 (Aldosterone Synthase)Cre/+::Bmal1Fl/Fl mice and adrenal cortex-specific Bmal1-null (Ad-KO) mice. Plasma corticosterone was increased in Ad-KO mice following restraint or scruff stress, and in vitro responses to ACTH were elevated in adrenal cells from Ad-KO mice, replicating data from female SCC-KO mice. Gene analysis showed increased expression of adrenal genes in female SCC-KO mice involved in cell cycle control, cell adhesion-extracellular matrix interaction, and ligand receptor activity that could promote steroid production. These observations underscore a role for adrenal Bmal1 as an attenuator of steroid secretion that is most prominent in female mice.

8 citations


Posted ContentDOI
16 Oct 2019-bioRxiv
TL;DR: Inspired by known epithelial integrin expression in the proliferative niche of the human intestine, an α2β1 integrin-binding peptide is identified as a critical component of the synthetic matrix that supports human duodenal colon and endometrial organoid propagation.
Abstract: Epithelial organoids are now an important tool in fields ranging from regenerative medicine to drug discovery. Organoid culture requires Matrigel, a complex, tumor-derived, extracellular matrix. An alternative completely synthetic matrix could improve culture reproducibility, clarify mechanistic phenomena, and enable applications involving human implantation. Here, we designed synthetic matrices with tunable biomolecular and biophysical properties that allowed us to identify critical gel parameters in organoid formation. Inspired by known epithelial integrin expression in the proliferative niche of the human intestine, we identified an α2β1 integrin-binding peptide as a critical component of the synthetic matrix that supports human duodenal colon and endometrial organoid propagation. We show that organoids emerge from single cells, retain their proliferative capacity, are functionally responsive to basolateral stimulation and have correct apicobasal polarity upon induction of differentiation. The local biophysical presentation of the cues, rather than bulk mechanical properties, appears to be the dominant parameter governing epithelial cell proliferation and organoid formation in the synthetic matrix.

4 citations


Posted ContentDOI
07 Jan 2019-bioRxiv
TL;DR: The identified metabolites are sufficient to increase susceptibility to EHEC in the human Colon Chip model and they contribute to species-specific tolerance, which lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.
Abstract: Background Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic E. coli (EHEC) infection whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities. Results We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites — 4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid — that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity. Conclusion Organ on chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.

Patent
26 Dec 2019
TL;DR: In this article, the authors proposed a method for primary aldosteronism (PA) by administering a therapeutically effective amount of at least one fibroblast growth factor receptor 2 inhibitor or a composition thereof.
Abstract: Methods for treating primary aldosteronism (PA) by administering a therapeutically effective amount of at least one fibroblast growth factor receptor 2 inhibitor or a composition thereof are disclosed herein. Also encompassed herein are compositions comprising a therapeutically effective amount of at least one fibroblast growth factor receptor 2 inhibitor, a therapeutically effective amount of at least one inhibitor of WNT/beta-catenin signaling, and a pharmaceutically acceptable carrier. Such compositions are used to ameliorate the symptoms of PA, thereby treating the disease.