scispace - formally typeset
Search or ask a question

Showing papers by "Diane S. Krause published in 2006"


Journal ArticleDOI
TL;DR: The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC, believing this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.

14,724 citations


01 Jan 2006
TL;DR: The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy as discussed by the authors proposed minimal criteria to define human MSC, such as MSC must be plastic-adherent when maintained in standard culture conditions, MSC should express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules.
Abstract: The considerable therapeutic potential of human multipotent mesenchymal stromal cells (MSC) has generated markedly increasing interest in a wide variety of biomedical disciplines. However, investigators report studies of MSC using different methods of isolation and expansion, and different approaches to characterizing the cells. Thus it is increasingly difficult to compare and contrast study outcomes, which hinders progress in the field. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC. First, MSC must be plastic-adherent when maintained in standard culture conditions. Second, MSC must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. Third, MSC must differentiate to osteoblasts, adipocytes and chondroblasts in vitro. While these criteria will probably require modification as new knowledge unfolds, we believe this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.

606 citations


Journal ArticleDOI
15 Oct 2006-Blood
TL;DR: The murine model provides a useful platform to study human MDS/AML transformation, as well as the Wnt/beta-catenin pathway's role in the pathogenesis of leukemia stem cells.

208 citations


Journal ArticleDOI
TL;DR: It was found that only at doses that induced lung injury could marrow derived lung epithelium be identified following BMT, indicating a critical relationship between lung injury and the phenotypic change from BMDCs to lung epithelial cells.
Abstract: Bone marrow-derived cells (BMDCs) can adopt an epithelial phenotype in the lung following bone marrow transplantation (BMT). This phenomenon has been assumed to result from the lung injury that occurs with myeloablative radiation. To date, no study has related the degree of epithelial chimerism following bone marrow transplantation to the lung damage induced by preconditioning for BMT. Such a goal is crucial to understanding the local host factors that promote the engraftment of BMDCs as lung epithelia. We undertook this aim by performing sex-mismatched bone marrow transplantation using a variety of preconditioning regimens and comparing measurements of lung injury (bronchoalveolar lavage [BAL] cell count, alveolar-capillary leak assayed by BAL protein levels, and terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis on epithelial cells) with rigorous methods to quantify bone marrow-derived lung epithelia (costaining for epithelial and donor markers on tissue sections and isolated lung epithelia in recipient mice). We found that only at doses that induced lung injury could marrow derived lung epithelium be identified following BMT. With irradiation doses less than 1,000 centigray (cGy), there was little to no apparent injury to the lung, and there were no marrow-derived pneumocytes despite high levels of hematopoietic chimerism. In contrast, 4 days after either split or single-dose 1,000 cGy irradiation, nearly 15% of lung epithelia were apoptotic, and with this dose, marrow-derived type II pneumocytes (0.2%) were present at 28 days. These data indicate a critical relationship between lung injury and the phenotypic change from BMDCs to lung epithelial cells.

99 citations


Journal ArticleDOI
TL;DR: The data suggest that rare BM-derived epithelial cells in the GI and nasal epithelium detected in CFTR-/- transplanted mice provide a modest level ofCFTR-dependent chloride secretion.
Abstract: Several studies have demonstrated that bone marrow (BM)-derived cells give rise to rare epithelial cells in the gastrointestinal (GI) and respiratory tracts after BM transplantation into myeloablated recipients. We investigate whether, after transplantation of cystic fibrosis transmembrane conductance regulator (CFTR)-positive BM-derived cells, BM-derived GI and airway epithelial cells can provide CFTR activity in the GI tract and nasal epithelium of recipient cystic fibrosis mice. CFTR−/− mice were transplanted with wild-type BM after receiving different doses of irradiation, and CFTR activity was assessed in vivo in individual mice over time by using rectal and nasal potential difference analyses and in vitro by Ussing chamber analysis. The data suggest that rare BM-derived epithelial cells in the GI and nasal epithelium detected in CFTR−/− transplanted mice provide a modest level of CFTR-dependent chloride secretion. Detection of CFTR mRNA and protein in tissues of transplanted CFTR−/− mice supports these data.

78 citations


Journal ArticleDOI
01 Nov 2006
TL;DR: The processes leading to the appearance of marrow-derived pneumocytes are discussed and the therapeutic potential of bone marrow to fuse with or differentiate into epithelial cells of the lung is highlighted.
Abstract: Contribution of transplanted bone marrow has, in many models, led to the appearance of marrow-derived epithelial cells in a variety of organs, including the lung. Following the initial descriptions of these cells, many questions remain about the mechanisms by which bone marrow adopts an epithelial phenotype in the murine lung. Data from other epithelial lineages, such as those of the kidney and colon, suggest that one mechanism is fusion of transplanted marrow with host pneumocytes. This process appears to require severe damage and may not be the only mechanism by which mature lung epithelia can derive from marrow. This article discusses the processes leading to the appearance of marrow-derived pneumocytes and highlights the therapeutic potential of bone marrow to fuse with or differentiate into epithelial cells of the lung.

27 citations


Journal ArticleDOI
TL;DR: In conclusion, transplantation of wild‐type BM attenuates progression of mesangial sclerosis in the Wt1+/− model of renal disease, and the mechanism by which this occurs may involve engraftment of BM‐derived cells in the renal parenchyma.
Abstract: Bone marrow (BM) transplantation has been shown to provide beneficial effects in injured organs, including heart, liver, and kidney. We explored the therapeutic potential of BM transplantation (BMT) in Wilms' tumor suppressor 1 (Wt1) heterozygous mice, which represent a model of mesangial sclerosis. After transplantation of wild-type BM, there is statistically significantly lower urinary albumin and increased survival in Wt1+/- recipients. Control BMT using Wt1+/- donors showed no significant beneficial effects. The long-term beneficial effect of BMT was dependent on the dose of irradiation applied to the recipients before BMT. At a lethal dose of 1,000 cGy, the decrease in albuminuria and prolongation of lifespan in Wt1+/- mice were transient, with maximal amelioration at 12 weeks and resumption of albuminuria by 24 weeks after BMT. This was, at least in part, due to irradiation and not Wt1 heterozygosity because wild-type recipients also developed albuminuria within 24 weeks of BMT with 1,000 cGy. In contrast, Wt1+/- mice transplanted after 400 cGy showed long-term improvement in albuminuria and lifespan. Approximately 0.4% of podocytes were marrow derived, a level that is unlikely to be responsible for the therapeutic effects. In addition, donor BM cells formed rings surrounding the glomeruli, and approximately one third of the cells in these rings were macrophages. In conclusion, transplantation of wild-type BM attenuates progression of mesangial sclerosis in the Wt1+/- model of renal disease, and the mechanism by which this occurs may involve engraftment of BM-derived cells in the renal parenchyma.

25 citations


Journal ArticleDOI
TL;DR: It is shown for the first time that MS can be prevented if BMT is performed before disease onset as assessed by improved lifespan, renal function, renal histology, and TEM analysis.

3 citations