scispace - formally typeset
Search or ask a question

Showing papers by "Eric R. Fearon published in 2012"


Journal ArticleDOI
08 Nov 2012-Nature
TL;DR: It is proposed that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.
Abstract: Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of β-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, 'inflammatory signature' genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as 'tumour-elicited inflammation'. Although infiltrating CD4(+) T(H)1 cells and CD8(+) cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (T(H)17) cells promote tumorigenesis, and a 'T(H)17 expression signature' in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.

1,069 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Axin2 acts as a potent promoter of carcinoma behavior by up-regulating the activity of the transcriptional repressor, Snail1, inducing a functional epithelial-mesenchymal transition (EMT) program and driving metastatic activity.
Abstract: Aberrant activation of canonical Wingless-type MMTV integration site family (Wnt) signaling is pathognomonic of colorectal cancers (CRC) harboring functional mutations in either adenomatous polyposis coli or β-catenin. Coincident with Wnt cascade activation, CRCs also up-regulate the expression of Wnt pathway feedback inhibitors, particularly the putative tumor suppressor, Axin2. Because Axin2 serves as a negative regulator of canonical Wnt signaling in normal cells, recent attention has focused on the utility of increasing Axin2 levels in CRCs as a means to slow tumor progression. However, rather than functioning as a tumor suppressor, we demonstrate that Axin2 acts as a potent promoter of carcinoma behavior by up-regulating the activity of the transcriptional repressor, Snail1, inducing a functional epithelial-mesenchymal transition (EMT) program and driving metastatic activity. Silencing Axin2 expression decreases Snail1 activity, reverses EMT, and inhibits CRC invasive and metastatic activities in concert with global effects on the Wnt-regulated cancer cell transcriptome. The further identification of Axin2 and nuclear Snail1 proteins at the invasive front of human CRCs supports a revised model wherein Axin2 acts as a potent tumor promoter in vivo.

137 citations


Journal ArticleDOI
16 Jul 2012-PLOS ONE
TL;DR: Pregnane X Receptor (PXR), a master regulator of drug metabolism and inflammation, is abundantly expressed in the gastrointestinal tract and pharmacological targeting of intestinal PXR using natural metabolically labile ligands could serve as effective and potent therapeutics for gut inflammation that avert systemic drug interactions.
Abstract: Pregnane X Receptor (PXR), a master regulator of drug metabolism and inflammation, is abundantly expressed in the gastrointestinal tract. Baicalein and its O-glucuronide baicalin are potent anti-inflammatory and anti-cancer herbal flavonoids that undergo a complex cycle of interconversion in the liver and gut. We sought to investigate the role these flavonoids play in inhibiting gut inflammation by an axis involving PXR and other potential factors. The consequences of PXR regulation and activation by the herbal flavonoids, baicalein and baicalin were evaluated in vitro in human colon carcinoma cells and in vivo using wild-type, Pxr-null, and humanized (hPXR) PXR mice. Baicalein, but not its glucuronidated metabolite baicalin, activates PXR in a Cdx2-dependent manner in vitro, in human colon carcinoma LS174T cells, and in the murine colon in vivo. While both flavonoids abrogate dextran sodium sulfate (DSS)-mediated colon inflammation in vivo, oral delivery of a potent bacterial β-glucuronidase inhibitor eliminates baicalin’s effect on gastrointestinal inflammation by preventing the microbial conversion of baicalin to baicalien. Finally, reduction of gastrointestinal inflammation requires the binding of Cdx2 to a specific proximal site on the PXR promoter. Pharmacological targeting of intestinal PXR using natural metabolically labile ligands could serve as effective and potent therapeutics for gut inflammation that avert systemic drug interactions.

81 citations


Journal ArticleDOI
TL;DR: It is definitively established that maternal Cdx2 is not essential for mouse development using a Cre/lox strategy, and only deletion of the maternal gene can unambiguously resolve its requirement in mouse development.
Abstract: In many invertebrate and vertebrate species, cell fates are assigned through the cellular inheritance of differentially localized maternal determinants. Whether mammalian embryogenesis is also regulated by deterministic mechanisms is highly controversial. The caudal domain transcription factor CDX2 has been reported to act as a maternal determinant regulating cell fate decisions in mouse development. However, this finding is contentious because of reports that maternal Cdx2 is not essential for development. Notably, all of the previously published studies of maternal Cdx2 relied on injected RNA interference constructs, which could introduce experimental variation. Only deletion of the maternal gene can unambiguously resolve its requirement in mouse development. Here, we genetically ablated maternal Cdx2 using a Cre/lox strategy, and we definitively establish that maternal Cdx2 is not essential for mouse development.

57 citations


Journal ArticleDOI
TL;DR: The β-catenin-dependent Wnt signaling pathway has key roles in embryonic development and adult tissues and is defective in various cancers and reveal roles for mutations in the RING finger proteins in cancer.

16 citations


Journal ArticleDOI
TL;DR: Endoscopy can be validated by MRI as a robust methodology for quantitative monitoring of therapy, representing a promising approach for future preclinical efforts to assess utility of novel colorectal cancer prevention strategies.

7 citations