scispace - formally typeset
Search or ask a question

Showing papers by "G. Polenta published in 2012"


Journal ArticleDOI
TL;DR: In this paper, the authors used the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey.
Abstract: Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3 x R500, i.e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole radial range. Our measurement is fully consistent with previous Planck results on integrated SZ fluxes, further strengthening the agreement between SZ and X-ray measurements inside R500. Correcting for the effects of the Planck beam, we have calculated the corresponding pressure profiles. This new constraint from SZ measurements is consistent with the X-ray constraints from XMM-Newton in the region in which the profiles overlap (i.e., [0.1-1]R500), and is in fairly good agreement with theoretical predictions within the expected dispersion. At larger radii the average pressure profile is slightly flatter than most predictions from numerical simulations. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P0, c500, gamma, alpha, beta] = [6.41, 1.81, 0.31, 1.33, 4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts we reconstruct from our stacked pressure profile the gas mass fraction profile out to 3 x R500. Within the temperature driven uncertainties, our Planck constraints are compatible with the cosmic baryon fraction and expected gas fraction in halos.

337 citations


Journal ArticleDOI
Paolo Giommi1, G. Polenta1, G. Polenta2, Anne Lähteenmäki3, Anne Lähteenmäki4, D. J. Thompson5, M. Capalbi1, S. Cutini1, Dario Gasparrini1, J. González-Nuevo6, Jonathan León-Tavares3, M. López-Caniego7, Mn Mazziotta8, C. Monte8, C. Monte9, M. Perri1, S. Rainò9, S. Rainò8, G. Tosti8, G. Tosti10, Andrea Tramacere11, F. Verrecchia1, Hugh D. Aller12, M. F. Aller12, E. Angelakis13, Denis Bastieri8, Denis Bastieri14, Andrei Berdyugin15, Anna Bonaldi16, Laura Bonavera17, Laura Bonavera6, Carlo Burigana2, David N. Burrows18, S. Buson8, E. Cavazzuti1, G. Chincarini19, Sergio Colafrancesco2, L. Costamante20, F. Cuttaia2, Filippo D'Ammando2, G. de Zotti2, G. de Zotti6, M. Frailis2, Lars Fuhrmann13, S. Galeotta2, F. Gargano8, N. Gehrels5, Nicola Giglietto9, Nicola Giglietto8, Francesco Giordano9, Marcello Giroletti2, E. Keihänen21, O. King22, Thomas P. Krichbaum13, Anthony Lasenby23, N. Lavonen3, Charles R. Lawrence22, C. Leto1, Elina Lindfors15, Nazzareno Mandolesi2, Marcella Massardi2, Walter Max-Moerbeck22, Peter F. Michelson20, M. G. Mingaliev24, Paolo Natoli25, Paolo Natoli2, Paolo Natoli1, I. Nestoras13, E. Nieppola15, E. Nieppola3, Kari Nilsson15, B. Partridge26, Vasiliki Pavlidou22, T. J. Pearson22, Pietro Procopio2, Jörg P. Rachen13, Anthony C. S. Readhead22, R. Reeves22, A. Reimer20, R. Reinthal15, S. Ricciardi2, Joseph L. Richards22, D. Riquelme, Jari Saarinen15, Anna Sajina27, M. Sandri2, P. Savolainen3, A. Sievers, A. Sillanpää15, Yu. V. Sotnikova24, Mark Stevenson22, G. Tagliaferri2, L. O. Takalo15, Joni Tammi3, D. Tavagnacco2, Luca Terenzi2, L. Toffolatti28, Merja Tornikoski3, Corrado Trigilio2, M. Turunen3, G. Umana2, H. Ungerechts, F. Villa2, Jingwen Wu29, Andrea Zacchei2, J. A. Zensus13, Xu Zhou29 
TL;DR: In this paper, simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard Xray, and gamma-ray bands, with additional 5 GHz flux-density limits to ensure a good probability of a Planck detection.
Abstract: We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands, with additional 5 GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by the Fermi Large Area Telescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with (alpha) approx 0 up to about 70GHz, above which it steepens to (alpha) approx -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (nu(sup s)(sub peak)) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with (nu(sup s)(sub peak)) = 10(exp 13.1 +/- 0.1) Hz, while the mean inverse Compton peak frequency, (nu(sup IC)(sub peak)), ranges from 10(exp 21) to 10(exp 22) Hz. The distributions of nu(sup s)(sub peak) and nu(sup IC)(sub peak) of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars. defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method, with gamma-ray selected blazars peaking at approx 7 or more, and radio-selected blazars at values close to 1, thus implying that the common assumption that the blazar power budget is largely dominated by high-energy emission is a selection effect. A comparison of our multi-frequency data with theoretical predictions shows that simple homogeneous SSC models cannot explain the simultaneous SEDs of most of the gamma-ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi~LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and nu(sup s)(sub peak) predicted by the blazar sequence.

222 citations


Journal ArticleDOI
TL;DR: In this article, the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS) was presented.
Abstract: We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo mass conversion using realistic mock catalogues based on the Millennium Simulation. Applying a multi-frequency matched filter to the Planck data for each LBG, and averaging the results in bins of stellar mass, we measure the mean SZ signal down to $M_\ast\sim 2\times 10^{11} \Msolar$, with a clear indication of signal at even lower stellar mass. We derive the scaling relation between SZ signal and halo mass by assigning halo properties from our mock catalogues to the real LBGs and simulating the Planck observation process. This relation shows no evidence for deviation from a power law over a halo mass range extending from rich clusters down to $M_{500}\sim 2\times 10^{13} \Msolar$, and there is a clear indication of signal down to $M_{500}\sim 4\times 10^{12} \Msolar$. Planck's SZ detections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with Malmquist bias effects in the X-ray sample.

166 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify and characterize the emission from the Galactic "haze" at microwave wavelengths, which is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude.
Abstract: Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray "haze" or "bubbles," indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.

133 citations


Journal ArticleDOI
TL;DR: In this paper, the authors use the Planck data to search for signatures of a fraction of the missing baryons between pairs of galaxy clusters, which are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect).
Abstract: About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.

114 citations


Journal ArticleDOI
TL;DR: In this article, the authors present further results from the ongoing XMM-Newton validation follow-up of Planck cluster candidates, detailing X-ray observations of eleven candidates detected at a signal-to-noise ratio of 4.5 < S/N < 5.3 in the same 10-month survey maps used in the construction of the Early SZ sample.
Abstract: We present further results from the ongoing XMM-Newton validation follow-up of Planck cluster candidates, detailing X-ray observations of eleven candidates detected at a signal-to-noise ratio of 4.5 < S/N < 5.3 in the same 10-month survey maps used in the construction of the Early SZ sample. The sample was selected in order to test internal SZ quality flags, and the pertinence of these flags is discussed in light of the validation results. Ten of the candidates are found to be bona fide clusters lying below the RASS flux limit. Redshift estimates are available for all confirmed systems via X-ray Fe-line spectroscopy. They lie in the redshift range 0.19 < z < 0.94, demonstrating Planck's capability to detect clusters up to high z. The X-ray properties of the new clusters appear to be similar to previous new detections by Planck at lower z and higher SZ flux: the majority are X-ray underluminous for their mass, estimated using YX as mass proxy, and many have a disturbed morphology. We find tentative indication for Malmquist bias in the YSZ-YX relation, with a turnover at YSZ ~ 4 × 10-4 arcmin2. We present additional new optical redshift determinations with ENO and ESO telescopes of candidates previously confirmed with XMM-Newton. The X-ray and optical redshifts for a total of 20 clusters are found to be in excellent agreement. We also show that useful lower limits can be put on cluster redshifts using X-ray data only via the use of the YX vs. YSZ and X-ray flux FX vs. YSZ relations.

82 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Planck Early Catalogue (ERCSC) at 100 to 857 GHz to estimate the number of synchrotron and dust-dominated sources.
Abstract: (abridged for arXiv) We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources -- infrared and radio sources -- from the Planck Early Catalogue (ERCSC) at 100 to 857GHz. Our sample contains, after the 80% completeness cut, between 122 and 452 and sources, with flux densities above 0.3 and 1.9Jy at 100 and 857GHz, over about 31 to 40% of the sky. Using Planck HFI, all the sources have been classified as either dust-dominated or synchrotron-dominated on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353GHz; at 353GHz or higher (or 217GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (earlier Planck, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies. We derive the multi-frequency Euclidean level and compare it to WMAP, Spitzer and IRAS results. The submillimetre number counts are not well reproduced by current evolution models of dusty galaxies, whereas the millimetre part appears reasonably well fitted by the most recent model for synchrotron-dominated sources. Finally we provide estimates of the local luminosity density of dusty galaxies, providing the first such measurements at 545 and 857GHz.

64 citations


Journal ArticleDOI
TL;DR: In this article, the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates are presented, with 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey.
Abstract: We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. 14 new clusters were detected by XMM, including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6 clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We discuss our results in the context of the full XMM validation programme, in which 51 new clusters have been detected. This includes 4 double and 2 triple systems, some of which are chance projections on the sky of clusters at different z. We find that association with a RASS-BSC source is a robust indicator of the reliability of a candidate, whereas association with a FSC source does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4 arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this level. The corresponding mass threshold depends on z. Systems with M500 > 5 10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. (abridged)

53 citations


Journal ArticleDOI
TL;DR: In this paper, the gamma-ray emission and the (sub-)mm luminosities are correlated over five orders of magnitude and the most significant statistical correlations arise when observations are quasi-simultaneous within 2 months.
Abstract: The coexistence of Planck and Fermi satellites in orbit has enabled the exploration of the connection between the (sub-)millimeter and gamma-ray emission in a large sample of blazars. We find that the gamma-ray emission and the (sub-)mm luminosities are correlated over five orders of magnitude. However, this correlation is not significant at some frequency bands when simultaneous observations are considered. The most significant statistical correlations, on the other hand, arise when observations are quasi-simultaneous within 2 months. Moreover, we find that sources with an approximate spectral turnover in the middle of the mm-wave regime are more likely to be strong gamma-ray emitters. These results suggest a physical relation between the newly injected plasma components in the jet and the high levels of gamma-ray emission.

33 citations


Journal ArticleDOI
TL;DR: In this paper, a comparison of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager, is presented.
Abstract: A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and the scale radius (theta_500) of each cluster. Our resulting constraints in the Y_500-theta_500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.

25 citations


Journal ArticleDOI
TL;DR: In this article, the results from a deep XMM-Newton re-observation are presented, showing that the three clumps are likely part of the same supercluster structure.
Abstract: The survey of galaxy clusters performed by Planck through the Sunyaev-Zeldovich effect has already discovered many interesting objects, thanks to the whole coverage of the sky. One of the SZ candidates detected in the early months of the mission near to the signal to noise threshold, PLCKG214.6+37.0, was later revealed by XMM-Newton to be a triple system of galaxy clusters. We have further investigated this puzzling system with a multi-wavelength approach and we present here the results from a deep XMM-Newton re-observation. The characterisation of the physical properties of the three components has allowed us to build a template model to extract the total SZ signal of this system with Planck data. We partly reconciled the discrepancy between the expected SZ signal from X-rays and the observed one, which are now consistent at less than 1.2 sigma. We measured the redshift of the three components with the iron lines in the X-ray spectrum, and confirmed that the three clumps are likely part of the same supercluster structure. The analysis of the dynamical state of the three components, as well as the absence of detectable excess X-ray emission, suggest that we are witnessing the formation of a massive cluster at an early phase of interaction.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown  +208 moreInstitutions (54)
TL;DR: In this article, the authors present an analysis of Planck satellite data on the Coma Cluster observed via the Sunyaev-Zeldovich effect, and they find that the Arnaud et al. universal pressure profile does not fit Coma, and that their pressure profile for merging systems provides a good fit of the data only at r R_500 than the mean pressure profile predicted by the simulations.
Abstract: We present an analysis of Planck satellite data on the Coma Cluster observed via the Sunyaev-Zeldovich effect. Planck is able, for the first time, to detect SZ emission up to r ~ 3 X R_500. We test previously proposed models for the pressure distribution in clusters against the azimuthally averaged data. We find that the Arnaud et al. universal pressure profile does not fit Coma, and that their pressure profile for merging systems provides a good fit of the data only at r R_500 than the mean pressure profile predicted by the simulations. The Planck image shows significant local steepening of the y profile in two regions about half a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and indeed the western feature was previously noticed in the ROSAT PSPC mosaic as well as in the radio. Using Planck y profiles extracted from corresponding sectors we find pressure jumps of 4.5+0.4-0.2 and 5.0+1.3-0.1 in the west and southeast, respectively. Assuming Rankine-Hugoniot pressure jump conditions, we deduce that the shock waves should propagate with Mach number M_w=2.03+0.09-0.04 and M_se=2.05+0.25-0.02 in the West and Southeast, respectively. Finally, we find that the y and radio-synchrotron signals are quasi-linearly correlated on Mpc scales with small intrinsic scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields fall off much more slowly with radius than previously thought.

01 Jan 2012
TL;DR: In this paper, the authors proposed a new instrument called QUBIC (Q and U Bolometric Interferometer for Cosmology) based on bolometric interferometry, which can detect the B-mode polarisation of the Cosmic Microwave Background.
Abstract: The primordial B-mode polarisation of the Cosmic Microwave Background is the imprints of the gravitational wave background generated by inflation. Observing the B-mode is up to now the most direct way to constrain the physics of the primordial Universe, especially inflation. To detect these B-modes, high sensitivity is required as well as an exquisite control of systematics effects. To comply with these requirements, we propose a new instrument called QUBIC (Q and U Bolometric Interferometer for Cosmology) based on bolometric interferometry. The control of systematics is obtained with a close-packed interferometer while bolometers cooled to very low temperature allow for high sensitivity. We present the architecture of this new instrument, the status of the project and the self-calibration technique which allows accurate measurement of the instrumental systematic effects.