scispace - formally typeset
Search or ask a question

Showing papers by "Gerhard Schratt published in 2017"


Journal ArticleDOI
TL;DR: An overview of the most prominent regulatory miRNAs that control neural development is provided, highlighting how they act as ‘master regulators’ or ‘fine-tuners’ of gene expression, depending on context, to influence processes such as cell fate determination, cell migration, neuronal polarization and synapse formation.
Abstract: The proper formation and function of neuronal networks is required for cognition and behavior. Indeed, pathophysiological states that disrupt neuronal networks can lead to neurodevelopmental disorders such as autism, schizophrenia or intellectual disability. It is well-established that transcriptional programs play major roles in neural circuit development. However, in recent years, post-transcriptional control of gene expression has emerged as an additional, and probably equally important, regulatory layer. In particular, it has been shown that microRNAs (miRNAs), an abundant class of small regulatory RNAs, can regulate neuronal circuit development, maturation and function by controlling, for example, local mRNA translation. It is also becoming clear that miRNAs are frequently dysregulated in neurodevelopmental disorders, suggesting a role for miRNAs in the etiology and/or maintenance of neurological disease states. Here, we provide an overview of the most prominent regulatory miRNAs that control neural development, highlighting how they act as 'master regulators' or 'fine-tuners' of gene expression, depending on context, to influence processes such as cell fate determination, cell migration, neuronal polarization and synapse formation.

194 citations


Journal ArticleDOI
TL;DR: A novel activity‐dependent miRNA/RBP crosstalk during synaptic scaling is identified, with potential implications for neural network homeostasis and epileptogenesis.
Abstract: Synaptic downscaling is a homeostatic mechanism that allows neurons to reduce firing rates during chronically elevated network activity. Although synaptic downscaling is important in neural circuit development and epilepsy, the underlying mechanisms are poorly described. We performed small RNA profiling in picrotoxin (PTX)‐treated hippocampal neurons, a model of synaptic downscaling. Thereby, we identified eight microRNAs (miRNAs) that were increased in response to PTX, including miR‐129‐5p, whose inhibition blocked synaptic downscaling in vitro and reduced epileptic seizure severity in vivo . Using transcriptome, proteome, and bioinformatic analysis, we identified the calcium pump Atp2b4 and doublecortin (Dcx) as miR‐129‐5p targets. Restoring Atp2b4 and Dcx expression was sufficient to prevent synaptic downscaling in PTX‐treated neurons. Furthermore, we characterized a functional crosstalk between miR‐129‐5p and the RNA‐binding protein (RBP) Rbfox1. In the absence of PTX, Rbfox1 promoted the expression of Atp2b4 and Dcx. Upon PTX treatment, Rbfox1 expression was downregulated by miR‐129‐5p, thereby allowing the repression of Atp2b4 and Dcx. We therefore identified a novel activity‐dependent miRNA/RBP crosstalk during synaptic scaling, with potential implications for neural network homeostasis and epileptogenesis.

75 citations