scispace - formally typeset
Search or ask a question

Showing papers in "Development in 2017"


Journal ArticleDOI
TL;DR: This Review provides a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discusses how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Abstract: Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.

495 citations


Journal ArticleDOI
TL;DR: The cellular, molecular and biomechanical mechanisms involved in neural tube closure are reviewed, based on studies of various vertebrate species, focusing on the most recent advances in the field.
Abstract: Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field.

340 citations


Journal ArticleDOI
TL;DR: A third phase of pluripotency is proposed to exist as part of a developmental continuum between the naïve and primed phases, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues.
Abstract: The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naive and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naive and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues.

324 citations


Journal ArticleDOI
TL;DR: This Review summarizes the different methods for generating organoids from cells isolated from human and mouse lungs, and compares their final structure and cellular composition with that of the airways or alveoli of the adult lung.
Abstract: Lungs are composed of a system of highly branched tubes that bring air into the alveoli, where gas exchange takes place. The proximal and distal regions of the lung contain epithelial cells specialized for different functions: basal, secretory and ciliated cells in the conducting airways and type II and type I cells lining the alveoli. Basal, secretory and type II cells can be grown in three-dimensional culture, with or without supporting stromal cells, and under these conditions they give rise to self-organizing structures known as organoids. This Review summarizes the different methods for generating organoids from cells isolated from human and mouse lungs, and compares their final structure and cellular composition with that of the airways or alveoli of the adult lung. We also discuss the potential and limitations of organoids for addressing outstanding questions in lung biology and for developing new drugs for disorders such as cystic fibrosis and asthma.

289 citations


Journal ArticleDOI
TL;DR: The exciting promise of organoid technology, as well as the current limitations and what it will take to overcome them are discussed.
Abstract: The recent increase in organoid research has been met with great enthusiasm, as well as expectation, from the scientific community and the public alike. There is no doubt that this technology opens up a world of possibilities for scientific discovery in developmental biology as well as in translational research, but whether organoids can truly live up to this challenge is, for some, still an open question. In this Spotlight article, Meritxell Huch and Juergen Knoblich begin by discussing the exciting promise of organoid technology and give concrete examples of how this promise is starting to be realised. In the second part, Matthias Lutolf and Alfonso Martinez-Arias offer a careful and considered view of the state of the organoid field and its current limitations, and lay out the approach they feel is necessary to maximise the potential of organoid technology.

270 citations


Journal ArticleDOI
TL;DR: This Primer summarises the current understanding of the intriguing family of KRAB-ZFP transcriptional regulators and its contribution to the control, evolution and co-option of transposable elements.
Abstract: Kruppel-associated box domain zinc finger proteins (KRAB-ZFPs) are the largest family of transcriptional regulators in higher vertebrates. Characterized by an N-terminal KRAB domain and a C-terminal array of DNA-binding zinc fingers, they participate, together with their co-factor KAP1 (also known as TRIM28), in repression of sequences derived from transposable elements (TEs). Until recently, KRAB-ZFP/KAP1-mediated repression of TEs was thought to lead to irreversible silencing, and the evolutionary selection of KRAB-ZFPs was considered to be just the host component of an arms race against TEs. However, recent advances indicate that KRAB-ZFPs and their TE targets also partner up to establish species-specific regulatory networks. Here, we provide an overview of the KRAB-ZFP gene family, highlighting how its evolutionary history is linked to that of TEs, and how KRAB-ZFPs influence multiple aspects of development and physiology.

255 citations


Journal ArticleDOI
TL;DR: A new method using a protease that works in the cold for cell dissociation dramatically reduces single-cell RNA-seq artifacts, allowing more accurate determination of gene expression in the newborn mouse kidney.
Abstract: Single-cell RNA-seq is a powerful technique. Nevertheless, there are important limitations, including the technical challenges of breaking down an organ or tissue into a single-cell suspension. Invariably, this has required enzymatic incubation at 37°C, which can be expected to result in artifactual changes in gene expression patterns. Here, we describe a dissociation method that uses a protease with high activity in the cold, purified from a psychrophilic microorganism. The entire procedure is carried out at 6°C or colder, at which temperature mammalian transcriptional machinery is largely inactive, thereby effectively 'freezing in' the in vivo gene expression patterns. To test this method, we carried out RNA-seq on 20,424 single cells from postnatal day 1 mouse kidneys, comparing the results of the psychrophilic protease method with procedures using 37°C incubation. We show that the cold protease method provides a great reduction in gene expression artifacts. In addition, the results produce a single-cell resolution gene expression atlas of the newborn mouse kidney, an interesting time in development when mature nephrons are present yet nephrogenesis remains extremely active.

249 citations


Journal ArticleDOI
TL;DR: The initial transition process for extinction of mouse embryonic stem cell identity upon differentiation immediately follows collapse of the naïve pluripotency transcription factor circuitry and precedes upregulation of lineage-specific factors.
Abstract: Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here, we examine the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naive status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naive pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naive cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.

230 citations


Journal ArticleDOI
TL;DR: Co-differentiation of endothelial cells and cardiomyocytes from human pluripotent stem cells provides a cardiac microtissue model with potential applications for disease modelling and drug discovery.
Abstract: Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully recapitulate native human physiology in vitro would therefore ideally incorporate this cardiomyocyte-endothelium crosstalk. Here, we have generated and characterized human cardiac microtissues in vitro that integrate both cell types in complex 3D structures. We established conditions for simultaneous differentiation of cardiomyocytes and endothelial cells from human pluripotent stem cells following initial cardiac mesoderm induction. The endothelial cells expressed cardiac markers that were also present in primary cardiac microvasculature, suggesting cardiac endothelium identity. These cell populations were further enriched based on surface markers expression, then recombined allowing development of beating 3D structures termed cardiac microtissues. This in vitro model was robustly reproducible in both embryonic and induced pluripotent stem cells. It thus represents an advanced human stem cell-based platform for cardiovascular disease modelling and testing of relevant drugs.

220 citations


Journal ArticleDOI
TL;DR: An organoid culture system for endometrium is established, reproducing tissue epithelium physiology and allowing long-term expansion, and provides a powerful tool for studying mechanisms underlying the biology as well as the pathology of this key reproductive organ.
Abstract: The endometrium, which is of crucial importance for reproduction, undergoes dynamic cyclic tissue remodeling. Knowledge of its molecular and cellular regulation is poor, primarily owing to a lack of study models. Here, we have established a novel and promising organoid model from both mouse and human endometrium. Dissociated endometrial tissue, embedded in Matrigel under WNT-activating conditions, swiftly formed organoid structures that showed long-term expansion capacity, and reproduced the molecular and histological phenotype of the tissue's epithelium. The supplemented WNT level determined the type of mouse endometrial organoids obtained: high WNT yielded cystic organoids displaying a more differentiated phenotype than the dense organoids obtained in low WNT. The organoids phenocopied physiological responses of endometrial epithelium to hormones, including increased cell proliferation under estrogen and maturation upon progesterone. Moreover, the human endometrial organoids replicated the menstrual cycle under hormonal treatment at both the morpho-histological and molecular levels. Together, we established an organoid culture system for endometrium, reproducing tissue epithelium physiology and allowing long-term expansion. This novel model provides a powerful tool for studying mechanisms underlying the biology as well as the pathology of this key reproductive organ.

219 citations


Journal ArticleDOI
TL;DR: How knowledge gained from developmental biology can be used to guide human in vitro organogenesis is summarised, and the potential applications of this technology are discussed.
Abstract: Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro . The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro , and how organoids are now being used as a primary research tool to investigate human developmental biology.

Journal ArticleDOI
TL;DR: This Review provides an overview of the organization and timing of spermatogenesis and then discusses these models in light of recent studies of SSC markers, heterogeneity and cell division dynamics, highlighting the evidence for and against each model.
Abstract: Spermatogonial stem cells (SSCs) are crucial for maintaining spermatogenesis throughout life, and understanding how these cells function has important implications for understanding male infertility. Recently, various populations of cells harbouring stem cell-like properties have been identified in rodent seminiferous tubules, but deciphering how these cells might fuel spermatogenesis has been difficult, and various models to explain SSC dynamics have been put forward. This Review provides an overview of the organization and timing of spermatogenesis and then discusses these models in light of recent studies of SSC markers, heterogeneity and cell division dynamics, highlighting the evidence for and against each model.

Journal ArticleDOI
TL;DR: A simple, transgene-free method is described for resetting human ESCs or iPSCs to a stable naïve status via transient histone deacetylase inhibition.
Abstract: Much attention has focussed on the conversion of human pluripotent stem cells (PSCs) to a more naive developmental status. Here we provide a method for resetting via transient histone deacetylase inhibition. The protocol is effective across multiple PSC lines and can proceed without karyotype change. Reset cells can be expanded without feeders with a doubling time of around 24 h. WNT inhibition stabilises the resetting process. The transcriptome of reset cells diverges markedly from that of primed PSCs and shares features with human inner cell mass (ICM). Reset cells activate expression of primate-specific transposable elements. DNA methylation is globally reduced to a level equivalent to that in the ICM and is non-random, with gain of methylation at specific loci. Methylation imprints are mostly lost, however. Reset cells can be re-primed to undergo tri-lineage differentiation and germline specification. In female reset cells, appearance of biallelic X-linked gene transcription indicates reactivation of the silenced X chromosome. On reconversion to primed status, XIST-induced silencing restores monoallelic gene expression. The facile and robust conversion routine with accompanying data resources will enable widespread utilisation, interrogation, and refinement of candidate naive cells.

Journal ArticleDOI
TL;DR: An overview of the most prominent regulatory miRNAs that control neural development is provided, highlighting how they act as ‘master regulators’ or ‘fine-tuners’ of gene expression, depending on context, to influence processes such as cell fate determination, cell migration, neuronal polarization and synapse formation.
Abstract: The proper formation and function of neuronal networks is required for cognition and behavior. Indeed, pathophysiological states that disrupt neuronal networks can lead to neurodevelopmental disorders such as autism, schizophrenia or intellectual disability. It is well-established that transcriptional programs play major roles in neural circuit development. However, in recent years, post-transcriptional control of gene expression has emerged as an additional, and probably equally important, regulatory layer. In particular, it has been shown that microRNAs (miRNAs), an abundant class of small regulatory RNAs, can regulate neuronal circuit development, maturation and function by controlling, for example, local mRNA translation. It is also becoming clear that miRNAs are frequently dysregulated in neurodevelopmental disorders, suggesting a role for miRNAs in the etiology and/or maintenance of neurological disease states. Here, we provide an overview of the most prominent regulatory miRNAs that control neural development, highlighting how they act as 'master regulators' or 'fine-tuners' of gene expression, depending on context, to influence processes such as cell fate determination, cell migration, neuronal polarization and synapse formation.

Journal ArticleDOI
TL;DR: The extent to which in vitro differentiation of human pluripotent stem cells recapitulates bona fide human developmental haematopoiesis is discussed, and some future directions in the field are outlined.
Abstract: Haematopoietic stem cells (HSCs) emerge during embryogenesis and give rise to the adult haematopoietic system. Understanding how early haematopoietic development occurs is of fundamental importance for basic biology and medical sciences, but our knowledge is still limited compared with what we know of adult HSCs and their microenvironment. This is particularly true for human haematopoiesis, and is reflected in our current inability to recapitulate the development of HSCs from pluripotent stem cells in vitro In this Review, we discuss what is known of human haematopoietic development: the anatomical sites at which it occurs, the different temporal waves of haematopoiesis, the emergence of the first HSCs and the signalling landscape of the haematopoietic niche. We also discuss the extent to which in vitro differentiation of human pluripotent stem cells recapitulates bona fide human developmental haematopoiesis, and outline some future directions in the field.

Journal ArticleDOI
TL;DR: The advantages of brain organoids over other model systems to study development and recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms are highlighted.
Abstract: Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.

Journal ArticleDOI
TL;DR: Early gastruloid patterning involves the development of the embryonic axes in the absence of extra-embryonic tissues, a process that relies on the interactions of Nodal and Wnt, but not BMP, whereas BMP signalling is dispensable.
Abstract: The establishment of the anteroposterior (AP) axis is a crucial step during animal embryo development. In mammals, genetic studies have shown that this process relies on signals spatiotemporally deployed in the extra-embryonic tissues that locate the position of the head and the onset of gastrulation, marked by T/Brachyury (T/Bra) at the posterior of the embryo. Here, we use gastruloids, mESC-based organoids, as a model system with which to study this process. We find that gastruloids localise T/Bra expression to one end and undergo elongation similar to the posterior region of the embryo, suggesting that they develop an AP axis. This process relies on precisely timed interactions between Wnt/β-catenin and Nodal signalling, whereas BMP signalling is dispensable. Additionally, polarised T/Bra expression occurs in the absence of extra-embryonic tissues or localised sources of signals. We suggest that the role of extra-embryonic tissues in the mammalian embryo might not be to induce the axes but to bias an intrinsic ability of the embryo to initially break symmetry. Furthermore, we suggest that Wnt signalling has a separable activity involved in the elongation of the axis.

Journal ArticleDOI
TL;DR: Current knowledge of how microtubule organization and dynamics change upon cellular differentiation is summarized and an overview of the functions of non-centrosomal microtubules arrays in differentiated cells is given.
Abstract: Over the past several decades, numerous studies have greatly expanded our knowledge about how microtubule organization and dynamics are controlled in cultured cells in vitro However, our understanding of microtubule dynamics and functions in vivo, in differentiated cells and tissues, remains under-explored. Recent advances in generating genetic tools and imaging technologies to probe microtubules in situ, coupled with an increased interest in the functions of this cytoskeletal network in differentiated cells, are resulting in a renaissance. Here, we discuss the lessons learned from such approaches, which have revealed that, although some differentiated cells utilize conserved strategies to remodel microtubules, there is considerable diversity in the underlying molecular mechanisms of microtubule reorganization. This highlights a continued need to explore how differentiated cells regulate microtubule geometry in vivo.

Journal ArticleDOI
TL;DR: The principal mechanisms involved in thyroid organogenesis and functional differentiation are reviewed, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates.
Abstract: Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed.

Journal ArticleDOI
TL;DR: The factors involved in tooth root development and in human root developmental defects are discussed, and the role of stem cells in establishing the crown-to-root transition is highlighted.
Abstract: The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans.

Journal ArticleDOI
TL;DR: During fracture repair in mice, chounrocytes at the chondro-osseous border adjacent to the invading vasculature transdifferentiate into osteoblasts by activating pluripotency programs and initiating cell division.
Abstract: Fractures heal predominantly through the process of endochondral ossification. The classic model of endochondral ossification holds that chondrocytes mature to hypertrophy, undergo apoptosis and new bone forms by invading osteoprogenitors. However, recent data demonstrate that chondrocytes transdifferentiate to osteoblasts in the growth plate and during regeneration, yet the mechanism(s) regulating this process remain unknown. Here, we show a spatially-dependent phenotypic overlap between hypertrophic chondrocytes and osteoblasts at the chondro-osseous border in the fracture callus, in a region we define as the transition zone (TZ). Hypertrophic chondrocytes in the TZ activate expression of the pluripotency factors [Sox2, Oct4 (Pou5f1), Nanog], and conditional knock-out of Sox2 during fracture healing results in reduction of the fracture callus and a delay in conversion of cartilage to bone. The signal(s) triggering expression of the pluripotency genes are unknown, but we demonstrate that endothelial cell conditioned medium upregulates these genes in ex vivo fracture cultures, supporting histological evidence that transdifferentiation occurs adjacent to the vasculature. Elucidating the cellular and molecular mechanisms underlying fracture repair is important for understanding why some fractures fail to heal and for developing novel therapeutic interventions.

Journal ArticleDOI
TL;DR: This Review summarizes the roles of fibroblast growth factors in repair and regeneration of different tissues and organs and in different organisms, ranging from planarians to humans.
Abstract: Tissue injury initiates a complex repair process, which in some organisms can lead to the complete regeneration of a tissue. In mammals, however, the repair of most organs is imperfect and results in scar formation. Both regeneration and repair are orchestrated by a highly coordinated interplay of different growth factors and cytokines. Among the key players are the fibroblast growth factors (FGFs), which control the migration, proliferation, differentiation and survival of different cell types. In addition, FGFs influence the expression of other factors involved in the regenerative response. Here, we summarize current knowledge on the roles of endogenous FGFs in regeneration and repair in different organisms and in different tissues and organs. Gaining a better understanding of these FGF activities is important for appropriate modulation of FGF signaling after injury to prevent impaired healing and to promote organ regeneration in humans.

Journal ArticleDOI
TL;DR: The role of the actomyosin meshwork in determining the forces that operate within and between cells and their environment to shape and organize cells and tissues is emphasized.
Abstract: D'Arcy Thompson was a proponent of applying mathematical and physical principles to biological systems, an approach that is becoming increasingly common in developmental biology. Indeed, the recent integration of quantitative experimental data, force measurements and mathematical modeling has changed our understanding of morphogenesis - the shaping of an organism during development. Emerging evidence suggests that the subcellular organization of contractile cytoskeletal networks plays a key role in force generation, while on the tissue level the spatial organization of forces determines the morphogenetic output. Inspired by D'Arcy Thompson's On Growth and Form, we review our current understanding of how biological forms are created and maintained by the generation and organization of contractile forces at the cell and tissue levels. We focus on recent advances in our understanding of how cells actively sculpt tissues and how forces are involved in specific morphogenetic processes.

Journal ArticleDOI
TL;DR: The basic physical and biological principles that underlie the self-organization of embryonic stem cells into organoids are discussed, and how this informs human development.
Abstract: Cells have an intrinsic ability to self-assemble and self-organize into complex and functional tissues and organs. By taking advantage of this ability, embryoids, organoids and gastruloids have recently been generated in vitro, providing a unique opportunity to explore complex embryological events in a detailed and highly quantitative manner. Here, we examine how such approaches are being used to answer fundamental questions in embryology, such as how cells self-organize and assemble, how the embryo breaks symmetry, and what controls timing and size in development. We also highlight how further improvements to these exciting technologies, based on the development of quantitative platforms to precisely follow and measure subcellular and molecular events, are paving the way for a more complete understanding of the complex events that help build the human embryo.

Journal ArticleDOI
TL;DR: The results demonstrate that the level of ID4 is predictive of stem cell or progenitor capacity in spermatogonia and dictates the interface of transition between the different functional states.
Abstract: Spermatogenesis is a classic model of cycling cell lineages that depend on a balance between stem cell self-renewal for continuity and the formation of progenitors as the initial step in the production of differentiated cells. The mechanisms that guide the continuum of spermatogonial stem cell (SSC) to progenitor spermatogonial transition and precise identifiers of subtypes in the process are undefined. Here we used an Id4-eGfp reporter mouse to discover that EGFP intensity is predictive of the subsets, with the ID4-EGFPBright population being mostly, if not purely, SSCs, whereas the ID4-EGFPDim population is in transition to the progenitor state. These subsets are also distinguishable by transcriptome signatures. Moreover, using a conditional overexpression mouse model, we found that transition from the stem cell to the immediate progenitor state requires downregulation of Id4 coincident with a major change in the transcriptome. Collectively, our results demonstrate that the level of ID4 is predictive of stem cell or progenitor capacity in spermatogonia and dictates the interface of transition between the different functional states.

Journal ArticleDOI
TL;DR: New insights into cortical GABAergic interneuron subtype specification are examined, focussing on spatial, temporal and genetic mechanisms regulating cell fate decisions in the mouse medial ganglionic eminence.
Abstract: Cortical interneurons are a diverse group of neurons that project locally and are crucial for regulating information processing and flow throughout the cortex. Recent studies in mice have advanced our understanding of how these neurons are specified, migrate and mature. Here, we evaluate new findings that provide insights into the development of cortical interneurons and that shed light on when their fate is determined, on the influence that regional domains have on their development, and on the role that key transcription factors and other crucial regulatory genes play in these events. We focus on cortical interneurons that are derived from the medial ganglionic eminence, as most studies have examined this interneuron population. We also assess how these data inform our understanding of neuropsychiatric disease and discuss the potential role of cortical interneurons in cell-based therapies.

Journal ArticleDOI
TL;DR: The different lung stem and progenitor cells that exist during normal homeostasis and that display remarkable lineage plasticity following injury are discussed.
Abstract: In contrast to a prior emphasis on the finality of cell fate decisions in developmental systems, cellular plasticity is now emerging as a general theme in the biology of multiple adult organ systems. In the lung, lineage tracing has been used to identify distinct epithelial stem and progenitor cell populations. These cells, together with their differentiated progeny, maintain a stable identity during steady state conditions, but can display remarkable lineage plasticity following injury. This Review summarizes our current understanding of the different cell lineages of the adult mammalian lung and their responses to injury. In the lung, which is constantly exposed to infection and aerosolized toxins, epithelial plasticity might be more of a rule than an exception, and it is likely that different injuries elicit different facultative responses.

Journal ArticleDOI
TL;DR: A high-throughput in vitro system allowing the induction of peri-gastrulation-like fates in geometrically confined hPSC colonies reveals that a two-step process underlies the observed self-organization and subsequent fate acquisition.
Abstract: How position-dependent cell fate acquisition occurs during embryogenesis is a central question in developmental biology. To study this process, we developed a defined, high-throughput assay to induce peri-gastrulation-associated patterning in geometrically confined human pluripotent stem cell (hPSC) colonies. We observed that, upon BMP4 treatment, phosphorylated SMAD1 (pSMAD1) activity in the colonies organized into a radial gradient. We developed a reaction-diffusion (RD)-based computational model and observed that the self-organization of pSMAD1 signaling was consistent with the RD principle. Consequent fate acquisition occurred as a function of both pSMAD1 signaling strength and duration of induction, consistent with the positional-information (PI) paradigm. We propose that the self-organized peri-gastrulation-like fate patterning in BMP4-treated geometrically confined hPSC colonies arises via a stepwise model of RD followed by PI. This two-step model predicted experimental responses to perturbations of key parameters such as colony size and BMP4 dose. Furthermore, it also predicted experimental conditions that resulted in RD-like periodic patterning in large hPSC colonies, and rescued peri-gastrulation-like patterning in colony sizes previously thought to be reticent to this behavior.

Journal ArticleDOI
TL;DR: Human cardiac organoids, which represent immature tissue, show an innate regenerative response and robust recovery after cryoinjury without pathological fibrosis or hypertrophy.
Abstract: The adult human heart possesses a limited regenerative potential following an ischemic event, and undergoes a number of pathological changes in response to injury. Although cardiac regeneration has been documented in zebrafish and neonatal mouse hearts, it is currently unknown whether the immature human heart is capable of undergoing complete regeneration. Combined progress in pluripotent stem cell differentiation and tissue engineering has facilitated the development of human cardiac organoids (hCOs), which resemble fetal heart tissue and can be used to address this important knowledge gap. This study aimed to characterize the regenerative capacity of immature human heart tissue in response to injury. Following cryoinjury with a dry ice probe, hCOs exhibited an endogenous regenerative response with full functional recovery 2 weeks after acute injury. Cardiac functional recovery occurred in the absence of pathological fibrosis or cardiomyocyte hypertrophy. Consistent with regenerative organisms and neonatal human hearts, there was a high basal level of cardiomyocyte proliferation, which may be responsible for the regenerative capacity of the hCOs. This study suggests that immature human heart tissue has an intrinsic capacity to regenerate.

Journal ArticleDOI
TL;DR: How fusogens surmount multiple energy barriers to mediate cell-cell fusion is reviewed, including how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogen act in the final approach between membranes.
Abstract: Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry.