scispace - formally typeset
Search or ask a question

Showing papers by "Jacques Neefjes published in 2007"


Journal ArticleDOI
TL;DR: The results illustrate that the assembly of microtubule motors on endosomes involves a cascade of linked events, and Rab7 recruits two effectors, RILP and ORP1L, to form a tripartite complex.
Abstract: The small GTPase Rab7 controls late endocytic transport by the minus end–directed motor protein complex dynein–dynactin, but how it does this is unclear. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are two effectors of Rab7. We show that GTP-bound Rab7 simultaneously binds RILP and ORP1L to form a RILP–Rab7–ORP1L complex. RILP interacts directly with the C-terminal 25-kD region of the dynactin projecting arm p150Glued, which is required for dynein motor recruitment to late endocytic compartments (LEs). Still, p150Glued recruitment by Rab7–RILP does not suffice to induce dynein-driven minus-end transport of LEs. ORP1L, as well as βIII spectrin, which is the general receptor for dynactin on vesicles, are essential for dynein motor activity. Our results illustrate that the assembly of microtubule motors on endosomes involves a cascade of linked events. First, Rab7 recruits two effectors, RILP and ORP1L, to form a tripartite complex. Next, RILP directly binds to the p150Glued dynactin subunit to recruit the dynein motor. Finally, the specific dynein motor receptor Rab7–RILP is transferred by ORP1L to βIII spectrin. Dynein will initiate translocation of late endosomes to microtubule minus ends only after interacting with βIII spectrin, which requires the activities of Rab7–RILP and ORP1L.

473 citations


Journal ArticleDOI
29 Nov 2007-Nature
TL;DR: Using a reciprocal chemical genetics approach, kinase inhibitors with antibiotic properties and their host targets are identified, and host signalling networks that are activated by intracellular bacteria for survival are determined.
Abstract: With the emergence of multidrug resistant (MDR) bacteria, it is imperative to develop new intervention strategies. Current antibiotics typically target pathogen rather than host-specific biochemical pathways. Here we have developed kinase inhibitors that prevent intracellular growth of unrelated pathogens such as Salmonella typhimurium and Mycobacterium tuberculosis. An RNA interference screen of the human kinome using automated microscopy revealed several host kinases capable of inhibiting intracellular growth of S. typhimurium. The kinases identified clustered in one network around AKT1 (also known as PKB). Inhibitors of AKT1 prevent intracellular growth of various bacteria including MDR-M. tuberculosis. AKT1 is activated by the S. typhimurium effector SopB, which promotes intracellular survival by controlling actin dynamics through PAK4, and phagosome-lysosome fusion through the AS160 (also known as TBC1D4)-RAB14 pathway. AKT1 inhibitors counteract the bacterial manipulation of host signalling processes, thus controlling intracellular growth of bacteria. By using a reciprocal chemical genetics approach, we identified kinase inhibitors with antibiotic properties and their host targets, and we determined host signalling networks that are activated by intracellular bacteria for survival.

302 citations


Journal ArticleDOI
TL;DR: The acquisition of latent cycle genes endowing unique growth-transforming ability has not liberated these agents from evolutionary pressure to evade CD8+ T cell control over virus replicative foci, and this targeting of the major histocompatibility complex class I pathway appears to be conserved among the BNLF2a homologues of Old World primate γ1-herpesviruses.
Abstract: γ1-Herpesviruses such as Epstein-Barr virus (EBV) have a unique ability to amplify virus loads in vivo through latent growth-transforming infection. Whether they, like α- and β-herpesviruses, have been driven to actively evade immune detection of replicative (lytic) infection remains a moot point. We were prompted to readdress this question by recent work (Pudney, V.A., A.M. Leese, A.B. Rickinson, and A.D. Hislop. 2005. J. Exp. Med. 201:349–360; Ressing, M.E., S.E. Keating, D. van Leeuwen, D. Koppers-Lalic, I.Y. Pappworth, E.J.H.J. Wiertz, and M. Rowe. 2005. J. Immunol. 174:6829–6838) showing that, as EBV-infected cells move through the lytic cycle, their susceptibility to EBV-specific CD8+ T cell recognition falls dramatically, concomitant with a reductions in transporter associated with antigen processing (TAP) function and surface human histocompatibility leukocyte antigen (HLA) class I expression. Screening of genes that are unique to EBV and closely related γ1-herpesviruses of Old World primates identified an early EBV lytic cycle gene, BNLF2a, which efficiently blocks antigen-specific CD8+ T cell recognition through HLA-A–, HLA-B–, and HLA-C–restricting alleles when expressed in target cells in vitro. The small (60–amino acid) BNLF2a protein mediated its effects through interacting with the TAP complex and inhibiting both its peptide- and ATP-binding functions. Furthermore, this targeting of the major histocompatibility complex class I pathway appears to be conserved among the BNLF2a homologues of Old World primate γ1-herpesviruses. Thus, even the acquisition of latent cycle genes endowing unique growth-transforming ability has not liberated these agents from evolutionary pressure to evade CD8+ T cell control over virus replicative foci.

181 citations


Journal ArticleDOI
TL;DR: It is demonstrated that phosphorylation of S305 in ERα by PKA leads to an altered orientation between ERα and its coactivator SRC‐1, which renders the transcription complex active in the presence of tamoxifen.
Abstract: Resistance to tamoxifen is observed in half of the recurrences in breast cancer, where the anti-estrogen tamoxifen acquires agonistic properties for transactivating estrogen receptor α (ERα). In a previous study, we showed that protein kinase A (PKA)-mediated phosphorylation of serine 305 (S305) of ERα results in resistance to tamoxifen. Now, we demonstrate that phosphorylation of S305 in ERα by PKA leads to an altered orientation between ERα and its coactivator SRC-1, which renders the transcription complex active in the presence of tamoxifen. This altered orientation involves the C-termini of ERα and SRC-1, which required a prolonged AF-1-mediated interaction. This intermolecular reorientation as a result of PKA-mediated phosphorylation of ERα-S305 and tamoxifen binding provides a unique model for resistance to the anticancer drug tamoxifen.

118 citations


Journal ArticleDOI
TL;DR: This work looks into the different aspects of SHR signalling, and discusses how biophysical techniques have contributed to visualizing their function in their native context, the living cell.
Abstract: Transcription controlled by Steroid Hormone Receptors (SHRs) plays a key role in many important physiological processes like organ development, metabolite homeostasis, and response to external stimuli. Understandably, the members of this family have drawn a lot of attention from the scientific community since their discovery, four decades ago. Still, after many years of research we are only beginning to unravel the complex nature of these receptors. The pace at which we do has improved significantly in recent years with the discovery of genetically encoded fluorescent probes, and the accompanying revival of biophysical approaches that allow more detailed study of SHRs. Here, we will look into the different aspects of SHR signalling, and discuss how biophysical techniques have contributed to visualizing their function in their native context, the living cell.

91 citations


Journal ArticleDOI
TL;DR: The current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.
Abstract: Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.

89 citations


Journal ArticleDOI
TL;DR: It is established methods using these fluorescent reporters to profile proteasome activity in different mouse tissues, carefully avoiding postlysis artifacts, and it is shown that proteasomes subunit activity is regulated in an organ-specific manner.
Abstract: With proteasome inhibitors in use in the clinic for the treatment of multiple myeloma and with clinical trials in progress investigating the treatment of a variety of hematologic and solid malignancies, accurate methods that allow profiling of proteasome inhibitor specificity and efficacy in patients are in demand. Here, we describe the development, full biochemical validation, and comparison of fluorescent proteasome activity reporters that can be used to profile proteasome activities in living cells with high sensitivity. Seven of the synthesized probes tested label proteasomes in lysates, although the fluorescent dye used affects their specificity. Two differentially labeled probes tested are suitable for studying proteasome activity in living cells by gel-based assays, by confocal laser scanning microscopy, and by flow cytometry. We established methods using these fluorescent reporters to profile proteasome activity in different mouse tissues, carefully avoiding postlysis artifacts, and we show that proteasome subunit activity is regulated in an organ-specific manner. The techniques described here could be used to study in vivo pharmacological properties of proteasome inhibitors.

87 citations


Journal ArticleDOI
TL;DR: It is proposed that routing of CD70 to MIIC serves to coordinate delivery of the T cell costimulatory signal in time and space with antigen recognition.
Abstract: TNF family member CD70 is the ligand of CD27, a costimulatory receptor that shapes effector and memory T cell pools. Tight control of CD70 expression is required to prevent lethal immunodeficiency. By selective transcription, CD70 is largely confined to activated lymphocytes and dendritic cells (DC). We show here that, in addition, specific intracellular routing controls its plasma membrane deposition. In professional antigen-presenting cells, such as DC, CD70 is sorted to late endocytic vesicles, defined as MHC class II compartments (MIIC). In cells lacking the machinery for antigen presentation by MHC class II, CD70 travels by default to the plasma membrane. Introduction of class II transactivator sufficed to reroute CD70 to MIIC. Vesicular trafficking of CD70 and MHC class II is coordinately regulated by the microtubule-associated dynein motor complex. We show that when maturing DC make contact with T cells in a cognate fashion, newly synthesized CD70 is specifically delivered via MIIC to the immunological synapse. Therefore, we propose that routing of CD70 to MIIC serves to coordinate delivery of the T cell costimulatory signal in time and space with antigen recognition.

55 citations


Journal ArticleDOI
01 Jan 2007-Immunity
TL;DR: This issue of Immunity shows that MHC class II molecules can present these through autophagosomes, but peptidome analyses have also identified many antigens from cytosolic or nuclear sources.

50 citations


Journal ArticleDOI
TL;DR: In mouse and boar sperm, Mrp9 localizes to the midpiece, a structure containing all sperm mitochondria, however, immunolocalization microscopy and cell fractionation studies with transfected HEK-293 cells and mouse testis show that MRP9/Mrp9 does not localize to mitochondria.
Abstract: The human and murine genes for MRP9 (multidrug resistance-associated protein 9; ABCC12) yield many alternatively spliced RNAs. Using a panel of monoclonal antibodies, we detected full-length Mrp9 only in testicular germ cells and mouse sperm; we obtained no evidence for the existence of the truncated 100 kDa MRP9 protein reported previously. In contrast with other MRPs, neither murine Mrp9 nor the human MRP9 produced in MRP9-transfected HEK-293 cells (human embryonic kidney cells) appears to contain N-linked carbohydrates. In mouse and boar sperm, Mrp9 localizes to the midpiece, a structure containing all sperm mitochondria. However, immunolocalization microscopy and cell fractionation studies with transfected HEK-293 cells and mouse testis show that MRP9/Mrp9 does not localize to mitochondria. In HEK-293 cells, it is predominantly localized in the endoplasmic reticulum. We have been unable to demonstrate transport by MRP9 of substrates transported by other MRPs, such as drug conjugates and other organic anions.

38 citations


Journal ArticleDOI
TL;DR: FRET analysis provides new insights into the mechanism of action of anti-hormones and are critical for selection of the correct individual patient-based endocrine therapy in breast cancer.
Abstract: Anti-estrogen resistance is a major clinical problem in the treatment of breast cancer. In this study, fluorescence resonance energy transfer (FRET) analysis, a rapid and direct way to monitor conformational changes of estrogen receptor alpha (ERalpha) upon anti-estrogen binding, was used to characterize resistance to anti-estrogens. Nine different anti-estrogens all induced a rapid FRET response within minutes after the compounds have liganded to ERalpha in live cells, corresponding to an inactive conformation of the ERalpha. Phosphorylation of Ser(305) and/or Ser(236) of ERalpha by protein kinase A (PKA) and of Ser(118) by mitogen-activated protein kinase (MAPK) influenced the FRET response differently for the various anti-estrogens. PKA and MAPK are both associated with resistance to anti-estrogens in breast cancer patients. Their respective actions can result in seven different combinations of phospho-modifications in ERalpha where the FRET effects of particular anti-estrogen(s) are nullified. The FRET response provided information on the activity of ERalpha under the various anti-estrogen conditions as measured in a traditional reporter assay. Tamoxifen and EM-652 were the most sensitive to kinase activities, whereas ICI-182,780 (Fulvestrant) and ICI-164,384 were the most stringent. The different responses of anti-estrogens to the various combinations of phospho-modifications in ERalpha elucidate why certain anti-estrogens are more prone than others to develop resistance. These data provide new insights into the mechanism of action of anti-hormones and are critical for selection of the correct individual patient-based endocrine therapy in breast cancer.