scispace - formally typeset
J

Jamie Shotton

Researcher at Microsoft

Publications -  180
Citations -  37983

Jamie Shotton is an academic researcher from Microsoft. The author has contributed to research in topics: Pose & Random forest. The author has an hindex of 66, co-authored 178 publications receiving 33842 citations. Previous affiliations of Jamie Shotton include University of Cambridge & Toshiba.

Papers
More filters
Proceedings ArticleDOI

KinectFusion: Real-time dense surface mapping and tracking

TL;DR: A system for accurate real-time mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving low-cost depth camera and commodity graphics hardware, which fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface model of the observed scene in real- time.
Journal ArticleDOI

The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

Bjoern H. Menze, +67 more
TL;DR: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) as mentioned in this paper was organized in conjunction with the MICCAI 2012 and 2013 conferences, and twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low and high grade glioma patients.
Proceedings ArticleDOI

Real-time human pose recognition in parts from single depth images

TL;DR: This work takes an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem, and generates confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes.
Journal ArticleDOI

Real-time human pose recognition in parts from single depth images

TL;DR: This work takes an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem, and generates confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes.
Proceedings ArticleDOI

KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera

TL;DR: Novel extensions to the core GPU pipeline demonstrate object segmentation and user interaction directly in front of the sensor, without degrading camera tracking or reconstruction, to enable real-time multi-touch interactions anywhere.