scispace - formally typeset
J

Johann W. Kolar

Researcher at ETH Zurich

Publications -  1009
Citations -  44219

Johann W. Kolar is an academic researcher from ETH Zurich. The author has contributed to research in topics: Rectifier & Three-phase. The author has an hindex of 97, co-authored 965 publications receiving 36902 citations. Previous affiliations of Johann W. Kolar include Alstom & Infineon Technologies.

Papers
More filters
Proceedings Article

X-treme Efficiency Power Electronics

TL;DR: In this paper, a generalized description and an overview of degrees of freedom and selected measures for efficiency improvement of power electronics converters is given, and a detailed analysis of the possibilities, of minimizing the semiconductor losses, the losses of the passive components including the EMI filter, and the power requirements of auxiliary systems in the course of the design process are given.
Journal Article

The essence of three-phase AC/AC converter systems

TL;DR: In this article, a comparison of the converter concepts, with respect to their fundamental, topology-related characteristics, complexity, control and efficiency, is presented. And a new unidirectional three-level matrix converter topology is proposed.
Journal ArticleDOI

VIENNA rectifier II-a novel single-stage high-frequency isolated three-phase PWM rectifier system

TL;DR: The structure of the power circuit of a new single-stage three-phase boost-type pulsewidth modulated (PWM) rectifier system (VIENNA Rectifier II) is developed and a straightforward space- vector-oriented method for the system control is proposed which guarantees a symmetric magnetization of the transformer.
Proceedings ArticleDOI

A novel three-phase three-port UPS employing a single high-frequency isolation transformer

TL;DR: In this paper, a three-phase PWM rectifier and a three phase PWM inverter are coupled via two four-quadrant full-bridge converter cells and a high-frequency isolation transformer.

Extreme efficiency power electronics

TL;DR: In this paper, a generalized description and an overview of degrees of freedom and selected measures for efficiency improvement of power electronics converters is given, and a detailed analysis of the possibilities, of minimizing the semiconductor losses, the losses of the passive components including the EMI filter, and the power requirements of auxiliary systems in the course of the design process are given.