scispace - formally typeset
Search or ask a question

Showing papers by "Katleen De Preter published in 2019"


Journal ArticleDOI
TL;DR: This analysis revealed strong associations between the neuroblastoma lincRNAs MIAT and MEG3 and MYCN and PHOX2B activity or expression and a strong association between stromal cell composition and driver gene status, resulting in differential expression of these linc RNAs.
Abstract: Long intergenic non-coding RNAs (lincRNAs) are emerging as integral components of signaling pathways in various cancer types. In neuroblastoma, only a handful of lincRNAs are known as upstream regulators or downstream effectors of oncogenes. Here, we exploit RNA sequencing data of primary neuroblastoma tumors, neuroblast precursor cells, neuroblastoma cell lines and various cellular perturbation model systems to define the neuroblastoma lincRNome and map lincRNAs up- and downstream of neuroblastoma driver genes MYCN, ALK and PHOX2B. Each of these driver genes controls the expression of a particular subset of lincRNAs, several of which are associated with poor survival and are differentially expressed in neuroblastoma tumors compared to neuroblasts. By integrating RNA sequencing data from both primary tumor tissue and cancer cell lines, we demonstrate that several of these lincRNAs are expressed in stromal cells. Deconvolution of primary tumor gene expression data revealed a strong association between stromal cell composition and driver gene status, resulting in differential expression of these lincRNAs. We also explored lincRNAs that putatively act upstream of neuroblastoma driver genes, either as presumed modulators of driver gene activity, or as modulators of effectors regulating driver gene expression. This analysis revealed strong associations between the neuroblastoma lincRNAs MIAT and MEG3 and MYCN and PHOX2B activity or expression. Together, our results provide a comprehensive catalogue of the neuroblastoma lincRNome, highlighting lincRNAs up- and downstream of key neuroblastoma driver genes. This catalogue forms a solid basis for further functional validation of candidate neuroblastoma lincRNAs.

12 citations


Journal ArticleDOI
01 Apr 2019-Oncogene
TL;DR: In this article, the PI3K-AKT-FOXO3a signaling axis was used to downregulate the HMG-box transcription factor 1 (HBP1) in high-risk primary neuroblastoma.
Abstract: ALK mutations occur in 10% of primary neuroblastomas and represent a major target for precision treatment. In combination with MYCN amplification, ALK mutations infer an ultra-high-risk phenotype resulting in very poor patient prognosis. To open up opportunities for future precision drugging, a deeper understanding of the molecular consequences of constitutive ALK signaling and its relationship to MYCN activity in this aggressive pediatric tumor entity will be essential. We show that mutant ALK downregulates the ‘HMG-box transcription factor 1’ (HBP1) through the PI3K-AKT–FOXO3a signaling axis. HBP1 inhibits both the transcriptional activating and repressing activity of MYCN, the latter being mediated through PRC2 activity. HBP1 itself is under negative control of MYCN through miR-17~92. Combined targeting of HBP1 by PI3K antagonists and MYCN signaling by BET- or HDAC-inhibitors blocks MYCN activity and significantly reduces tumor growth, suggesting a novel targeted therapy option for high-risk neuroblastoma.

12 citations


Posted ContentDOI
17 Oct 2019-bioRxiv
TL;DR: This study reports on thousands of novel RNA species across all major RNA biotypes, including a hitherto poorly-cataloged class of non-polyadenylated single-exon long non-coding RNAs.
Abstract: The human transcriptome consists of various RNA biotypes including multiple types of non-coding RNAs (ncRNAs). Current ncRNA compendia remain incomplete partially because they are almost exclusively derived from the interrogation of small- and polyadenylated RNAs. Here, we present a more comprehensive atlas of the human transcriptome that is derived from matching polyA-, total-, and small-RNA profiles of a heterogeneous collection of nearly 300 human tissues and cell lines. We report on thousands of novel RNA species across all major RNA biotypes, including a hitherto poorly-cataloged class of non-polyadenylated single-exon long non-coding RNAs. In addition, we exploit intron abundance estimates from total RNA-sequencing to test and verify functional regulation by novel non-coding RNAs. Our study represents a substantial expansion of the current catalogue of human ncRNAs and their regulatory interactions. All data, analyses, and results are available in the R2 web portal and serve as a basis to further explore RNA biology and function.

10 citations


Posted ContentDOI
08 Oct 2019-bioRxiv
TL;DR: A novel technique, reduced representation bisulfite sequencing on cell-free DNA (cf-RRBS), is shown to have the feasibility of obtaining the histopathological diagnosis with a minimally invasive test on either plasma or cerebrospinal fluid.
Abstract: In the clinical management of pediatric solid tumors, histological examination of tumor tissue obtained by a biopsy remains the gold standard to establish a conclusive pathological diagnosis. The DNA methylation pattern of a tumor is known to correlate with the histopathological diagnosis across cancer types and is showing promise in the diagnostic workup of tumor samples. This methylation pattern can be detected in the cell-free DNA. Here, we provide proof-of-concept of histopathologic classification of pediatric tumors using cell-free reduced representation bisulfite sequencing (cf-RRBS) from retrospectively collected plasma and cerebrospinal fluid samples. We determined the correct tumor type in 49 out of 60 (81.6%) samples starting from minute amounts (less than 10 ng) of cell-free DNA. We demonstrate that the majority of misclassifications were associated with sample quality and not with the extent of disease. Our approach has the potential to help tackle some of the remaining diagnostic challenges in pediatric oncology in a cost-effective and minimally invasive manner. Translational relevance Obtaining a correct diagnosis in pediatric oncology can be challenging in some tumor types, especially in renal tumors or central nervous system tumors. Furthermore, the diagnostic odyssey can result in anxiety and discomfort for these children. By applying a novel technique, reduced representation bisulfite sequencing on cell-free DNA (cf-RRBS), we show the feasibility of obtaining the histopathological diagnosis with a minimally invasive test on either plasma or cerebrospinal fluid. Furthermore, we were able to derive the copy number profile or tumor subtype from the same assay. Given that primary tumor material might be difficult to obtain, in particular in critically ill children or depending on the tumor location, and might be limited in terms of quantity or quality, our assay could become complementary to the classical tissue biopsy in difficult cases.

5 citations


01 Jan 2019
TL;DR: It is shown that mutant ALK downregulates the ‘HMG-box transcription factor 1’ (HBP1) through the PI3K-AKT–FOXO3a signaling axis, suggesting a novel targeted therapy option for high-risk neuroblastoma.
Abstract: ALK mutations occur in 10% of primary neuroblastomas and represent a major target for precision treatment. In combination with MYCN amplification, ALK mutations infer an ultra-high-risk phenotype resulting in very poor patient prognosis. To open up opportunities for future precision drugging, a deeper understanding of the molecular consequences of constitutive ALK signaling and its relationship to MYCN activity in this aggressive pediatric tumor entity will be essential. We show that mutant ALK downregulates the ‘HMG-box transcription factor 1’ (HBP1) through the PI3K-AKT–FOXO3a signaling axis. HBP1 inhibits both the transcriptional activating and repressing activity of MYCN, the latter being mediated through PRC2 activity. HBP1 itself is under negative control of MYCN through miR-17~92. Combined targeting of HBP1 by PI3K antagonists and MYCN signaling by BET- or HDAC-inhibitors blocks MYCN activity and significantly reduces tumor growth, suggesting a novel targeted therapy option for high-risk neuroblastoma.

4 citations


Journal ArticleDOI
TL;DR: A 17q super-enhancer regulated T-box Transcription Factor 2 (TBX2) is identified as constituent of a core regulatory circuitry driving proliferation through enhancing V-myc myelocytomatosis viral-related oncogene, neuroblastoma derived (avian) (MYCN)/Forkhead box protein M1(FOXM1) reactivation of dimerization partner, RB-like, E2F and multi-vulval class B targets.
Abstract: Chromosome 17q gains are a common alteration in high-risk neuroblastomas with unknown functional significance. We identified a 17q super-enhancer regulated T-box Transcription Factor 2 (TBX2) as constituent of a core regulatory circuitry driving proliferation through enhancing V-myc myelocytomatosis viral-related oncogene, neuroblastoma derived (avian) (MYCN)/Forkhead box protein M1(FOXM1) reactivation of dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) targets, which can be affected synergistically by combined cyclin-dependent kinase 7 and Bromo-domain inhibition.

2 citations