scispace - formally typeset
Search or ask a question

Showing papers by "Klaus Palme published in 1998"


Journal ArticleDOI
18 Dec 1998-Science
TL;DR: The PIN-FORMED (PIN1) gene was found to encode a 67-kilodalton protein with similarity to bacterial and eukaryotic carrier proteins, and the AtPIN1 protein was detected at the basal end of auxin transport-competent cells in vascular tissue.
Abstract: Polar auxin transport controls multiple developmental processes in plants, including the formation of vascular tissue. Mutations affecting the PIN-FORMED (PIN1) gene diminish polar auxin transport in Arabidopsis thaliana inflorescence axes. The AtPIN1gene was found to encode a 67-kilodalton protein with similarity to bacterial and eukaryotic carrier proteins, and the AtPIN1 protein was detected at the basal end of auxin transport-competent cells in vascular tissue. AtPIN1 may act as a transmembrane component of the auxin efflux carrier.

1,494 citations


Journal ArticleDOI
TL;DR: The results suggest that AtPIN2 plays an important role in control of gravitropism regulating the redistribution of auxin from the stele towards the elongation zone of roots.
Abstract: The molecular mechanisms underlying gravity perception and signal transduction which control asymmetric plant growth responses are as yet unknown, but are likely to depend on the directional flux of the plant hormone auxin. We have isolated an Arabidopsis mutant of the AtPIN2 gene using transposon mutagenesis. Roots of the Atpin2::En701 null-mutant were agravitropic and showed altered auxin sensitivity, a phenotype characteristic of the agravitropic wav6-52 mutant. The AtPIN2 gene was mapped to chromosome 5 (115.3 cM) corresponding to the WAV6 locus and subsequent genetic analysis indicated that wav6-52 and Atpin2::En701 were allelic. The AtPIN2 gene consists of nine exons defining an open reading frame of 1944 bp which encodes a 69 kDa protein with 10 putative transmembrane domains interrupted by a central hydrophilic loop. The topology of AtPIN2p was found to be similar to members of the major facilitator superfamily of transport proteins. We have shown that the AtPIN2 gene was expressed in root tips. The AtPIN2 protein was localized in membranes of root cortical and epidermal cells in the meristematic and elongation zones revealing a polar localization. These results suggest that AtPIN2 plays an important role in control of gravitropism regulating the redistribution of auxin from the stele towards the elongation zone of roots.

877 citations


Journal ArticleDOI
29 Jan 1998-Nature
TL;DR: Analysis of the sequence revealed an average gene density of one gene every 4.8 kilobases, and 54% of the predicted genes had significant similarity to known genes, and other interesting features were found, such as the sequence of a disease-resistance gene locus, the distribution of retroelements, and the frequent occurrence of clustered gene families.
Abstract: The plant Arabidopsis thaliana (Arabidopsis) has become an important model species for the study of many aspects of plant biology. The relatively small size of the nuclear genome and the availability of extensive physical maps of the five chromosomes provide a feasible basis for initiating sequencing of the five chromosomes. The YAC (yeast artificial chromosome)-based physical map of chromosome 4 was used to construct a sequence-ready map of cosmid and BAC (bacterial artificial chromosome) clones covering a 1.9-megabase (Mb) contiguous region, and the sequence of this region is reported here. Analysis of the sequence revealed an average gene density of one gene every 4.8 kilobases (kb), and 54% of the predicted genes had significant similarity to known genes. Other interesting features were found, such as the sequence of a disease-resistance gene locus, the distribution of retroelements, the frequent occurrence of clustered gene families, and the sequence of several classes of genes not previously encountered in plants.

832 citations


Journal ArticleDOI
TL;DR: The LhG4/pOp system may be used to study toxic or deleterious gene products, to coordinate the expression of multiple gene Products, to restrict transgene phenotypes to the F1 generation, and to generate hybrid seed.
Abstract: A widely applicable promoter system is described that allows a gene of interest to be activated in specific plant tissues after a cross between defined transgenic lines. The promoter, pOp, consists of lac operators cloned upstream of a minimal promoter. No expression was detected from this promoter when placed upstream of a β-glucuronidase (GUS) reporter gene in transgenic plants. Transcription from the promoter was activated by crossing reporter plants with activator lines that expressed a chimeric transcription factor, LhG4. This factor comprised transcription-activation domain-II from Gal4 of Saccharomyces cerevisiae fused to a mutant lac-repressor that binds its operator with increased affinity. When LhG4 was expressed from the CaMV 35S promoter, the spatial and quantitative expression characteristics of the 35S promoter were exhibited by the GUS reporter. The LhG4/pOp system may be used to study toxic or deleterious gene products, to coordinate the expression of multiple gene products, to restrict transgene phenotypes to the F1 generation, and to generate hybrid seed. The LhG4 system offers spatially regulated gene expression in the tissues of whole plants growing under normal conditions without the need for external intervention. It complements inducible expression systems that offer temporal control of gene expression in tissues that can be treated with inducing chemicals.

241 citations


Journal ArticleDOI
TL;DR: These experiments demonstrate the efficiency of the screening method and gene disruption strategy used for assigning functions to genes defined only by sequence and show that TRANSPARENT TESTA 6 (TT6) encodes flavanone 3-hydroxylase.
Abstract: A collection of 8,000 Arabidopsis thaliana plants carrying 48,000 insertions of the maize transposable element En-1 has been generated. This population was used for reverse genetic analyses to identify insertions in individual gene loci. By using a PCR-based screening protocol, insertions were found in 55 genes. En-1 showed no preference for transcribed or untranscribed regions nor for a particular orientation relative to the gene of interest. In several cases, En-1 was inserted within a few kilobases upstream or downstream of the gene. En-1 was mobilized from such positions into the respective gene to cause gene disruption. Knock-out alleles of genes involved in flavonoid biosynthesis were generated. One mutant line contained an En-1 insertion in the flavonol synthase gene (FLS) and showed drastically reduced levels of kaempferol. Allelism tests with other lines containing En-1 insertions in the flavanone 3-hydroxylase gene (F3H) demonstrated that TRANSPARENT TESTA 6 (TT6) encodes flavanone 3-hydroxylase. The f3h and fls null mutants complete the set of A. thaliana lines defective in early steps of the flavonoid pathway. These experiments demonstrate the efficiency of the screening method and gene disruption strategy used for assigning functions to genes defined only by sequence.

220 citations


Journal ArticleDOI
TL;DR: From the analysis of the presented data, it is concluded that even moderate point mutations in the pore of KAT1 seem to affect the pores geometry rather than channel gating.

27 citations


Patent
14 Dec 1998
TL;DR: In this paper, transgenic plants displaying an altered K+ metabolism due to the reduction of the activity of at least one potassium transporter of the AtKT family and/or of a inwardly rectifying potassium channel are described.
Abstract: Described are transgenic plants displaying an altered K+ metabolism due to the reduction of the activity of at least one potassium transporter of the AtKT family and/or of at least one inwardly rectifying potassium channel. Such plants show, for example, a reduced apical dominance.

7 citations