scispace - formally typeset
Open AccessJournal ArticleDOI

Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue

Reads0
Chats0
TLDR
The PIN-FORMED (PIN1) gene was found to encode a 67-kilodalton protein with similarity to bacterial and eukaryotic carrier proteins, and the AtPIN1 protein was detected at the basal end of auxin transport-competent cells in vascular tissue.
Abstract
Polar auxin transport controls multiple developmental processes in plants, including the formation of vascular tissue. Mutations affecting the PIN-FORMED (PIN1) gene diminish polar auxin transport in Arabidopsis thaliana inflorescence axes. The AtPIN1gene was found to encode a 67-kilodalton protein with similarity to bacterial and eukaryotic carrier proteins, and the AtPIN1 protein was detected at the basal end of auxin transport-competent cells in vascular tissue. AtPIN1 may act as a transmembrane component of the auxin efflux carrier.

read more

Citations
More filters
Journal ArticleDOI

Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation

TL;DR: It is shown that organ formation in Arabidopsis involves dynamic gradients of the signaling molecule auxin with maxima at the primordia tips, which suggest that PIN-dependent, local auxin gradients represent a common module for formation of all plant organs, regardless of their mature morphology or developmental origin.
Journal ArticleDOI

Auxin: regulation, action, and interaction.

TL;DR: Nearly six decades after the structural elucidation of IAA, many aspects of auxin metabolism, transport and signalling are well established; however, more than a few fundamental questions and innumerable details remain unresolved.
Journal ArticleDOI

The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots

TL;DR: This work shows that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root and reveals an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.
Journal ArticleDOI

Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis

TL;DR: The results indicate how the establishment of cell polarity, polar auxin efflux and local auxin response result in apical–basal axis formation of the embryo, and thus determine the axiality of the adult plant.
Journal ArticleDOI

Regulation of phyllotaxis by polar auxin transport.

TL;DR: It is shown that proteins involved in auxin transport regulate phyllotaxis, and data indicate that auxin is transported upwards into the meristem through the epidermis and the outermostMeristem cell layer.
References
More filters
Journal ArticleDOI

Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4

TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products.
Journal Article

Cleavage of structural proteins during the assemble of the head of bacterio-phage T4

U. K. Laemmli
- 01 Jan 1970 - 
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products as mentioned in this paper.
Journal ArticleDOI

Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction

TL;DR: A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described, providing a pure preparation of undegraded RNA in high yield and can be completed within 4 h.
Journal ArticleDOI

A simple method for displaying the hydropathic character of a protein

TL;DR: A computer program that progressively evaluates the hydrophilicity and hydrophobicity of a protein along its amino acid sequence has been devised and its simplicity and its graphic nature make it a very useful tool for the evaluation of protein structures.
Journal ArticleDOI

Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation.

TL;DR: It is suggested that the normal level of polar transport activity in the inflorescence axes is required in early developmental stages of floral bud formation in Arabidopsis and that the primary function of the pin1 gene is auxin polar transport in the inforescence axis.
Related Papers (5)